Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung)

Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) được dành chung cho tất cả các thí sinh thi vào các lớp chuyên Toán, Văn và Tiếng Anh; kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) : + Lớp 10 chuyên Anh của trường Trung học Thực hành có bốn Tổ học sinh, số học sinh trong mỗi tổ bằng nhau. Trong một bài kiểm tra Anh văn, một số bạn được điểm 8, các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Hỏi lớp có bao nhiêu học sinh và có bao nhiêu bạn được 9 điểm bài kiểm tra Anh văn. [ads] + Cho một tấm tôn hình vuông. Người ta cắt ở bốn góc của tấm tôn đó bốn hình vuông nhỏ bằng nhau, mỗi hình vuông nhỏ có cạnh bằng 2 cm rồi gập tấm tôn lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. + Cho tam giác ABC vuông cân tại A. Vẽ trung tuyến BM. Đường tròn tâm O, đường kính CM cắt cạnh BC tại N. Vẽ đường kính NK của đường tròn (O), AK cắt đường tròn (O) tại E (E khác K). Chứng minh rằng ba điểm B, M, E thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Long gồm 6 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R), các đường cao AD, BM, CN cắt nhau tại H. a. Chứng minh rằng AM.AC=AN.AB b. Chứng minh rằng OA vuông góc với MN c. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI=NG
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A ,đường cao AH .Gọi (P) và (Q) theo thứ tự là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) nó cắt AB, AH, AC theo thứ tự ở M, K, N [ads] 1. Chứng minh tam giác HPQ đồng dạng với tam giác ABC 2. Chứng minh PK song song với AB và tứ giác BMNC nội tiếp 3. Chứng minh năm điểm A, M, P, Q, N cùng nằm trên một đường tròn 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Tính giá trị lớn nhất của diện tích tam giác IDE theo a