Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam Bản PDF Ngày … tháng 12 năm 2019, tổ Toán – Tin trường THPT chuyên Hà Nội – Amsterdam tổ chức kì thi kiểm tra học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam gồm 4 mã đề: 072, 358, 641, 923; đề thi gồm 16 câu trắc nghiệm (chiếm 4 điểm) và 3 câu tự luận (chiếm 6 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam : + Trong các phép biến hình sau, phép biến hình nào không là một phép dời hình? A. Thực hiện liên tiếp hai phép quay. B. Thực hiện liên tiếp hai phép đối xứng trục. C. Thực hiện liên tiếp hai phép vị tự có cùng tâm và tỷ số vị tự là 2 số đối nhau. D. Thực hiện liên tiếp hai phép vị tự có cùng tâm và tỷ số vị tự là 2 số nghịch đảo của nhau. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB, CD. a) Chứng minh rằng: MN song song với mặt phẳng (SBC), (SAD). b) Gọi P là trung điểm SA. Chứng minh rằng: SB, SC song song với mặt phẳng (MNP). c) Gọi G1, G2 lần lượt là trọng tâm tam giác ABC, SBC. Chứng minh rằng: đường thẳng G1G2 song song với mặt phẳng (SAC). d) Dựng thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (PNG2). [ads] + Khẳng định nào trong các khẳng định sau là đúng? A. Nếu hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. B. Hai đường thẳng chéo nhau khi chúng không có điểm chung. C. Hai đường thẳng song song khi chúng ở trên cùng một mặt phẳng. D. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. + Cho tứ diện S.ABCD có đáy ABCD là hình thang có AB // CD. Gọi M, N và P lần lượt là trung điểm của SA, BC và AD. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là? A. Đường thẳng qua S và song song với AB. B. Đường thẳng qua N và song song với SC. C. Đường thẳng qua M và song song với AB. D. Đường thẳng MN. + Trong một hộp có 10 viên bi màu xanh và 8 viên bi màu đỏ. Bạn Bình lấy ngẫu nhiên 1 viên bi (lấy xong không trả lại vào hộp), sau đó bạn An lấy tiếp 1 viên bi nữa. Tính xác suất để hai bạn lấy được bi cùng màu.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong kỳ thi học kỳ 1, phòng thi số 1 có 24 học sinh trong đó có 4 học sinh tên An, Bảo, Cường, Danh. Trong phòng thi có 24 bàn xếp thành 4 dãy theo hàng dọc, mỗi dãy có 6 bàn. Giám thị phòng thi bố trí cho các học sinh ngồi ngẫu nhiên vào 24 bàn, mỗi bàn 1 học sinh. Tính xác suất 4 bạn có tên trên ngồi cạnh nhau theo cùng một hàng dọc. + Xác suất ném bóng vào rổ thành công trong mỗi lần ném của bốn học sinh An, Bảo, Cường, Danh lần lượt là 0.5, 0.6, 0.7, 0.8. Cho mỗi học sinh trên ném bóng vào rổ 1 lần. Tính xác suất có ít nhất một người ném thành công. + Trên một đường tròn cho n điểm phân biệt. Biết số tam giác có 3 đỉnh lấy từ n điểm này nhiều hơn số đoạn thẳng có 2 đầu mút cũng được lấy từ n điểm này là 75. Tìm n.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Marie Curie - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trường X tổ chức kiểm tra tập trung 3 môn Toán, Văn và Ngoại ngữ cho học sinh khối 11 trong thời gian một tuần (không tổ chức kiểm tra vào ngày chủ nhật). Biết rằng mỗi ngày học sinh chỉ kiểm tra một môn. Tính xác suất để môn Toán kiểm tra đầu tiên và các môn không kiểm tra vào hai ngày liên tiếp nhau. + Lớp 11A có 30 học sinh trong đó có 20 nam và 10 nữ. Có bao nhiêu cách chọn ra một nhóm 7 học sinh của lớp 11A gồm 4 học sinh nam và 3 học sinh nữ? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, OC và SD. a) Chứng minh đường thẳng MP song song với mặt phẳng (ABCD). b) Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (ABCD). c) Tìm thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Trung Trực - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong một hộp đựng 20 quả nhãn, 15 quả nho, 10 quả sơri. Lấy ngẫu nhiên ra 3 quả. Tính xác suất để lấy ra được các loại quả khác nhau. + Một người có 10 đôi giày khác nhau. Trong lúc đi du lịch vội vã nên đã lấy ngẫu nhiên 4 chiếc giày. Tính xác suất để người đó không lấy được đôi giầy nào đúng. + Cho hình chóp S.ABCD có đáy là tứ giác có các cặp cạnh đối không song song. AB cắt CD tại E. Gọi I, J lần lượt là trung điểm của SA, SB. Lấy N trên SD sao cho SN = 2ND. Lấy M là giao điểm của SC với (IJN). Chứng minh IJ, MN và SE đồng quy.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, hai đường chéo AC và BD cắt nhau tại O. Điểm M là trung điểm SA, điểm N thuộc cạnh CD sao cho ND = 3NC. a. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh rằng đường thẳng SC song song với mặt phẳng (OMN). c. Tìm giao điểm của đường thẳng MN với mặt phẳng (SBD). + Một hộp kín chứa 8 viên bi trắng, 7 viên bi đỏ và 9 viên bi xanh. Lấy ngẫu nhiên 7 viên bi từ hộp kín. Tính xác suất để trong các viên bi lấy ra có đúng 2 viên bi đỏ và 3 viên bi xanh. + Một hộp bóng đèn gồm có 50 chiếc trong đó bao gồm 30 chiếc loại I, 14 chiếc loại II và 6 chiếc loại III. Lấy ngẫu nhiên từ hộp 8 chiếc bóng đèn. Tính xác suất để trong các bóng đèn lấy ra có ít nhất 5 chiếc loại III.