Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic truyền thống 30 tháng 4 môn Toán 11 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023. Trích dẫn Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Cho p là số nguyên tố có dạng 20n + 7. Gọi S là tập hợp tất cả các số nguyên dương có thể biểu diễn dưới dạng a2 + 5b2 với a và b là hai số nguyên tố cùng nhau. a. Chứng minh rằng tồn tại số nguyên dương k sao cho kp thuộc S. b. Tìm số nguyên dương k0 nhỏ nhất sao cho k0p thuộc S. + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O;R). Các đường phân giác trong BX, CY của tam giác ABC cắt nhau tại I. J là trung điểm cung nhỏ BC của(O;R). Đường thẳng XY cắt các đường thẳng AI, BC lần lượt tại L, T. a. Chứng minh. b. Chứng minh đường thẳng qua I vuông góc với XY cắt đường thẳng OJ tại điểm O’ đối xứng với điểm O qua điểm J. c. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi G là điểm đối xứng của D qua đường thẳng EF. Biết các đường thẳng DL, AG cắt nhau tại W, chứng minh WI vuông góc với XY. + Cho a < b < c là ba nghiệm thực của phương trình 8×3 – 4×2 – 4x + 1 = 0. a. Lập phương trình bậc ba có 3 nghiệm là 1 – 2a2, 1 – 2b2, 1 – 2c2. b. Chứng minh rằng: 2a2 + b = 2b2 + c = 2c2 + a = 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Quảng Ngãi
Chiều thứ Năm ngày 08 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 11 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề thi chọn HSG tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Quảng Bình (Vòng 1)
Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2020 – 2021 và chọn đội dự tuyển dự thi chọn HSG Quốc gia môn Toán năm học 2021 – 2022 vòng 1. Đề thi chọn HSG tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Quảng Bình (Vòng 1) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG Toán 11 năm 2020 - 2021 sở GDĐT Vĩnh Phúc
Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi chọn HSG Toán 11 năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.