Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 - 2019 sở GDĐT Bình Định

Thứ Hai ngày 18 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 giỏi môn Toán để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 9 của tỉnh Bình Định, tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, các em được chọn chính là những tấm gương tiêu biểu trong phong trào học tập của tỉnh nhà. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 – 2019 sở GD&ĐT Bình Định gồm 04 bài toán tự luận, học sinh làm bài thi trong thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 – 2019 sở GD&ĐT Bình Định : + Trong mặt phẳng cho 8073 điểm mà diện tích của mọi tam giác với các đỉnh là các điểm đã cho không lớn hơn 1. Chứng minh rằng trong số các điểm đã cho có thể tìm được 2019 điểm nằm trong hoặc trên cạnh của một tam giác có diện tích không lớn hơn 1. [ads] + Cho tam giác nhọn ABC vuông cân tại A. Gọi D là trung điểm của cạnh BC. Lấy điểm M bất kỳ trên đoạn AD (M không trùng với A). Gọi N, P theo thứ tự là hình chiếu vuông góc của M trên các cạnh AB, AC và H là hình chiếu vuông góc của N lên đường thẳng PD. a) Chứng minh rằng: AH vuông góc với BH. b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I. Chứng minh ba điểm H, N, I thẳng hàng. + Cho tam giác ABC nội tiếp đường tròn (O), đường cao AH. Gọi M là giao điểm của AO và BC. Chứng minh rằng HB/HC + MB/MC ≥ 2AB/AC. Dấu bằng xảy ra khi nào?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Lý Nhật Quang - Nghệ An (vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 trường THCS Lý Nhật Quang, huyện Đô Lương, tỉnh Nghệ An (vòng 2). Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Lý Nhật Quang – Nghệ An (vòng 2) : + Cho P = abc là số nguyên tố có ba chữ số. Chứng minh rằng phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. + Có 48 quả cân có khối lượng là 1g, 2g, 3g, …, 48g. Hãy phân chia tất cả các quả cân đó thành ba nhóm sao cho tổng khối lượng của số quả cân trong ba nhóm bằng nhau. + Nhân dịp chào mừng ngày Hiến Chương Nhà Giáo Việt Nam và ngày kỷ niệm 45 năm thành lập trường THCS Lý Nhật Quang, Ban Giám Hiệu nhà trường đã dự định mời 100 đại biểu về dự, trong đó mỗi người đều quen không ít hơn 50 người. Chứng tỏ rằng Ban Giám Hiệu nhà trường có thể xếp được bốn người vào một bàn tròn sao cho mỗi người ngồi giữa hai người quen của mình.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Cho tam giác ABC nhọn, không cân (AB < AC), M là trung điểm của BC. Gọi E, F lần lượt là chân các đường vuông góc hạ từ M lên AC, AB (E thuộc AC; F thuộc AB). Đường thẳng qua C và vuông góc với BC, cắt ME tại P; đường thẳng qua B vuông góc với BC, cắt MF tại Q. 1) Chứng minh ME.MP = MF.MQ và MFE = MPQ. 2) Hai đường thẳng FM và AC cắt nhau tại S. Chứng minh tam giác SEF đồng dạng với tam giác SMA và AM vuông góc với PQ. 3) Gọi H là trực tâm của tam giác ABC. Chứng minh ba điểm P, H, Q thẳng hàng. + Cho a, b, x, y là các số nguyên dương thoả mãn a, b nguyên tố cùng nhau và (x2 + y2)/a = xy/b. Chứng minh a + 2b là số chính phương. + Trong khu rừng trên đảo có một đàn gồm 2021 con kì nhông màu xanh, 2022 con kì nhông màu đỏ, 2023 con kì nhông màu vàng sinh sống. Để lẩn trốn và săn mồi, loài kì nhông này biến đổi màu như sau: nếu hai con khác màu gặp nhau thì chúng cùng đổi sang màu thứ ba; nếu hai con cùng màu gặp nhau thì chúng giữ nguyên màu. Hỏi có khả năng nào để tất cả các con kì nhông trở thành cùng một màu được không? Vì sao?
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Nghi Thủy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Nghi Thủy, huyện Cửa Lò, tỉnh Nghệ An.
Đề chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 12 tháng 10 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Tìm số tự nhiên n sao cho n2 + 2022 là số chính phương. + Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: (1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2. Chứng minh rằng: a3 + b3 + c3 chia hết cho 3. + Cho tam giác ABC nhọn và điểm P nằm trong tam giác đó. Chứng minh khoảng cách lớn nhất trong các khoảng cách từ P tới ba đỉnh của tam giác không nhỏ hơn hai lần khoảng cách bé nhất trong các khoảng cách từ điểm P đến các cạnh của tam giác đó.