Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2018 - 2019 phòng GDĐT Ba Đình - Hà Nội

Ngày 07 tháng 05 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 – 2019, kỳ thi nhằm giúp học sinh rèn luyện thường xuyên để củng cố và nâng cao các kiến thức Toán THCS để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2018 – 2019 phòng GD&ĐT Ba Đình – Hà Nội được biên soạn dưới dạng tự luận, đề gồm 1 trang với 6 bài toán, học sinh có 90 phút (không tính khoảng thời gian giám thị coi thi phát đề) để hoàn thành bài thi KSCL Toán 9. [ads] Trích dẫn đề khảo sát chất lượng Toán 9 năm 2018 – 2019 phòng GD&ĐT Ba Đình – Hà Nội : + Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau. Buổi họp hôm đó có 378 người đến dự họp nên ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng ghế phải xếp thêm 1 ghế, mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết số hàng ghế ban đầu không vượt quá 20. + Cho phương trình: x^2 – (x – 3)x – m + 2 = 0 (x là ẩn số). a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m. b) Tìm m để phương trình có ít nhất một nghiệm dương. + Cho đường tròn (O;R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn, các đường cao AD và CE của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác AEDC là tứ giác nội tiếp. 2) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC. 3) Chứng minh AF/sinDEC không đổi. 4) Cho BC = 1,5R; gọi I là hình chiếu của G trên AB. Hãy tính bán kính đường tròn ngoại tiếp tam giác IBC theo R.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL môn Toán lớp 9 năm 2020 - 2021 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL môn Toán lớp 9 năm 2020 – 2021 trường THCS Nguyễn Du – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2021. Trích dẫn đề KSCL môn Toán lớp 9 năm 2020 – 2021 trường THCS Nguyễn Du – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol 2 Pyx và đường thẳng d y mx 3. a) Chứng minh với mọi giá trị của m, (d) luôn cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x. b) Tìm tất cả các giá trị của m để 2 1 2 x mx 4. + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O). Các đường cao AD, BE, CF cùng đi qua trực tâm H. Gọi M N lần lượt là hình chiếu vuông góc của D lên AB AC. Đường thẳng MN cắt BE tại điểm P. Gọi S G lần lượt là giao điểm của EF MN với đường thẳng BC. 1) Chứng minh bốn điểm AM DN cùng thuộc một đường tròn. 2) Chứng minh tứ giác BMPD là tứ giác nội tiếp và tứ giác DPEN là hình chữ nhật. 3) Gọi K là điểm đối xứng với D qua A, và L là hình chiếu vuông góc của D lên SK. Chứng minh G là trung điểm của đoạn thẳng SD và trung điểm của đoạn thẳng DL nằm trên đường tròn (O). + Cho a b là các số thực dương thỏa mãn 33 55 abab. Tìm giá trị lớn nhất của biểu thức 2 2 P a ab b.
Đề KSCL Toán 9 đợt 3 năm 2020 - 2021 phòng GDĐT Kim Thành - Hải Dương
Đề KSCL (khảo sát chất lượng) Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề KSCL Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương : + Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 2 ngày, tổ thứ hai may trong 3 ngày thì cả hai tổ may được 470 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn. + Cho các số x, y, z, t không âm thoả mãn: x.y + yz + zt + tx = 1. Tìm giá trị nhỏ nhất của biểu thức: 5×2 + 4y2 + 5z2 + t2.
Đề KSCL Toán 9 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 29 tháng 04 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn một ngôi nhà, mất 4 ngày thì xong việc. Hai người cùng làm trong 1 ngày thì người thứ nhất có việc bận nên một mình người thứ hai làm trong 6 ngày nữa thì mới xong công việc. Hỏi mỗi người làm việc một mình thì sau bao lâu xong công việc? + Cho một hình trụ có bán kính đáy là 3cm. Biết diện tích xung quanh của hình trụ là 907 cm2. Tính thể tích của hình trụ. + Cho đường tròn (O) đường kính AB. Qua trung điểm C của OA vẽ dây DE vuông góc với OA. Gọi K là điểm tùy ý trên cung nhỏ BD (K khác B D). H là giao điểm của AK và DE. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AH.AK = AD2. c) Lấy điểm F trên đoạn KE sao cho KF = KB. Chứng minh tam giác KFB là tam giác đều. Xác định vị trí của điểm K trên cung nhỏ BD để tổng KD + KB + KE đạt giá trị lớn nhất.
Đề KSCL Toán 9 năm 2020 - 2021 trường THCS Lê Ngọc Hân - Hà Nội
Thứ Bảy ngày 24 tháng 04 năm 2021, trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021. Đề KSCL Toán 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đám đất hình chữ nhật có chu vi là 104 mét. Nếu giữ nguyên chiều dài và tăng chiều rộng để mảnh đất trở thành hình vuông thì diện tích mảnh đất tăng lên 240 mét vuông. Tính diện tích mảnh vườn ban đầu. + Bài toán thực tế: Một cốc thủy tinh chứa nước có dạng hình trụ tròn có đường kính đáy là 8 cm. Người ta bỏ thêm vào cốc nước 10 viên đất nặn (đặc) hình lập phương (như hình bên) có cạnh là 2cm. Hỏi sau khi thêm đất nặn vào thì mực nước dâng lên thêm bao nhiêu cm so với ban đầu (biết bề dày thành cốc không đáng kể, đất nặn chìm hoàn toàn trong nước, lấy pi = 3,14 và làm tròn kết quả đến số thập phân thứ hai). + Trên mặt phẳng tọa độ xOy, cho Parabol (P): y = x^2 và đường thẳng (d): y = 2x – m + 1. a. Tìm m để (P) cắt (d) tại một điểm có hoành độ bằng -2. Tìm tọa độ giao điểm còn lại. b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn.