Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hai đường thẳng song song

Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề hai đường thẳng song song, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 2: Đường Thẳng Và Mặt Phẳng Trong Không Gian. Quan Hệ Song Song. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nhận biết được hai đường thẳng song song với nhau. + Trình bày được tính chất về mối quan hệ giữa giao tuyến của hai mặt phẳng và quan hệ song song. Kĩ năng: + Chứng minh được hai đường thẳng song song với nhau. + Biết cách xác định giao tuyến của hai mặt phẳng dựa vào quan hệ song song. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1. Tìm giao tuyến của hai mặt phẳng sử dụng quan hệ song song. Dạng 2: Chứng minh hai đường thẳng song song. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

121 câu trắc nghiệm quan hệ song song - Nguyễn Quốc Tuấn
Tài liệu gồm 23 trang tuyển chọn 121 câu trắc nghiệm quan hệ song song trong không gian, tài liệu do thầy Nguyễn Quốc Tuấn biên soạn. Trích dẫn tài liệu: 1. Phát biểu nào sau đây là sai? A. Cả 3 câu dưới đều sai. B. Hình thang có thể là hình biểu diễn của một hình bình hành. C. Trọng tâm G của tam giác ABC có hình chiếu song song là trọng tâm G’ của tam giác A’B’C’, trong đó A’B’C’ là hình chiếu song song của tam giác ABC. D. Hình chiếu song song của hai đường chéo nhau có thể là hai đường song song.? [ads] 2. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Điểm M thuộc cạnh SC sao cho SM = 3MC, N là giao điểm của SD và (MAB). Khi đó hình chiếu song song của SM trên mp(ABC) theo phương chiếu SA là? 3. Cho hình chóp S.ABCD có đáy là hình bình hành. Một mp(α) cắt các cạnh SA,SB,SC,SD lần lượt tại các điểm A’,B’,C’,D’ sao cho tứ giác A’B’C’D’ cũng là hình bình hành. Qua S kẻ Sx, Sy lần lượt song song với AB, AD . Gọi O là giao điểm của AC và BD . Khi đó ta có: A. Giao tuyến của (SAC) và (SB’D’) là đường thẳng Sx B. Giao tuyến của (SB’D’) và (SAC) là đường thẳng SO C. Giao tuyến của (SA’B’) và (SC’D’) là đường thẳng Sy D. Giao tuyến của (SA’D’) và (SBC) là đường thẳng SO