Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề số nguyên

Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, phân dạng và hướng dẫn giải các dạng toán chuyên đề số nguyên trong chương trình Số học 6. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề số nguyên: BÀI 1 . LÀM QUEN VỚI SỐ NGUYÊN ÂM. + Dạng 1. Hiểu ý nghĩa của việc sử dụng các số mang dấu âm. + Dạng 2. Ghi các điểm biểu diễn số nguyên trên trục số. BÀI 2 . TẬP HỢP CÁC SỐ NGUYÊN. + Dạng 1. Đọc và hiểu ý nghĩa các kí hiệu. + Dạng 2. Hiểu ý nghĩa của việc sử dụng các số mang dấu “+” và các số mang dấu “-”. + Dạng 3. Tìm số đối của các số cho trước để biểu thị các đại số có hai hướng ngược nhau. BÀI 3 . THỨ TỰ TRONG TẬP HỢP CÁC SỐ NGUYÊN. + Dạng 1. So sánh các số nguyên. + Dạng 2. Tìm các số nguyên thuộc một khoảng cho trước. + Dạng 3. Củng cố khái niệm giá trị tuyệt đối của một số nguyên. + Dạng 4. Củng cố lại về tập hợp N các số tự nhiên và tập hợp Z các số nguyên. + Dạng 5. Bài tập về số liền trước, số liền sau của một số nguyên. BÀI 4 . CỘNG HAI SỐ NGUYÊN CÙNG DẤU. + Dạng 1. Cộng hai số nguyên cùng dấu. + Dạng 2. Bài toán đưa về phép cộng hai số nguyên cùng dấu. + Dạng 3. Điền dấu >, < thích hợp vào ô vuông. BÀI 5 . CỘNG HAI SỐ NGUYÊN KHÁC DẤU. + Dạng 1. Cộng hai số nguyên. + Dạng 2. Bài toán đưa về phép cộng hai số nguyên. + Dạng 3. Điền số thích hợp vào ô trống. BÀI 6 . TÍNH CHẤT CỦA PHÉP CỘNG CÁC SỐ NGUYÊN. + Dạng 1. Tính tổng các nhiều số nguyên cho trước. + Dạng 2. Tính tổng tất cả các số nguyên thuộc một khoảng cho trước. + Dạng 3. Bài toán đưa về phép cộng các số nguyên. + Dạng 4. Sử dụng máy tính bỏ túi để cộng các số nguyên. [ads] BÀI 7 . PHÉP TRỪ HAI SỐ NGUYÊN. + Dạng 1. Trừ hai số nguyên. + Dạng 2. Thực hiện dãy các phép tính cộng, trừ các số nguyên. + Dạng 3. Tìm một trong hai số hạng khi biết tổng hoặc hiệu và số hạng kia. + Dạng 4. Tìm số đối của một số cho trước. + Dạng 5. Đố vui liên quan đến phép trừ số nguyên. + Dạng 6. SỬ DỤNG MÁY TÍNH BỎ TÚI ĐỂ LÀM PHÉP TRỪ HAI SỐ NGUYÊN. BÀI 8 . QUY TẮC DẤU NGOẶC. + Dạng 1. Tính các tổng đại số. + Dạng 2. Áp dụng quy tắc dấu ngoặc để đơn giản biểu thức. BÀI 9 . QUY TẮC CHUYỂN VẾ. + Dạng 1. Tìm số chưa biết trong một đẳng thức. + Dạng 2. Tìm số chưa biết trong một đẳng thức có chứa dấu giá trị tuyệt đối. + Dạng 3. Tính các tổng đại số. + Dạng 4. BÀI TOÁN ĐUA VỀ THỰC HIỆN PHÉP CỘNG, TRỪ CÁC SỐ NGUYÊN. BÀI 10 . NHÂN HAI SỐ NGUYÊN KHÁC DẤU. + Dạng 1. Nhân hai số nguyên khác dấu. + Dạng 2. Bài toán đưa về thực hiện phép nhân hai số nguyên khác dấu. + Dạng 3. Tìm các số nguyên x, y sao cho x.y = a. BÀI 11 . NHÂN HAI SỐ NGUYÊN CÙNG DẤU. + Dạng 1. Nhân hai số nguyên. + Dạng 2. Củng cố quy tắc đặt dấu trong phép nhân hai số nguyên. + Dạng 3. Bài toán đưa về thực hiện phép nhân hai số nguyên. + Dạng 4. Tìm các số nguyên x, y sao cho x.y = a. + Dạng 5. Tìm số chưa biết trong đẳng thức dạng A.B = 0. BÀI 12 . TÍNH CHẤT CỦA PHÉP NHÂN. + Dạng 1. Áp dụng tính chất của phép nhân để tính tích các số nguyên nhanh và đúng. + Dạng 2. Áp dụng tính chất phân phối của phép nhân đối với phép cộng. + Dạng 3. Xét dấu các thừa số và tích trong phép nhân nhiều số nguyên. BÀI 13 . BỘI VÀ ƯỚC CỦA MỘT SỐ NGUYÊN. + Dạng 1. Tìm các bội của một số nguyên cho trước. + Dạng 2. Tìm tất cả các ước của một số nguyên cho trước. + Dạng 3. Tìm số chưa biết x trong một đẳng thức dạng a.x = b. + Dạng 4. Tìm số bị chia, số chia, thương trong một phép chia. + Dạng 5. Chứng minh các tính chất về sự chia hết. + Dạng 6. Tìm số nguyên x thỏa mãn điều kiện về chia hết.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm số đo góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số đo góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Số đo góc. a) Số đo của một góc. Mỗi góc có một số đo góc (đơn vị là độ). Hai tia trùng nhau được coi là góc có số đo bằng 0. Cách đo góc: + Bước 1: Đặt thước đo góc sao cho tâm của thước trùng với đỉnh của góc và một cạnh của góc đi qua vạch số 0 trên thước. + Bước 2: Xem cạnh thứ hai của góc đi qua vạch nào của thước thì đó chính là số đo của góc. Lưu ý: Trên thước có hai hàng số ứng với cung lớn và cung nhỏ. Khi đọc kết quả cần đọc số nằm trên cùng một cung với số 0 mà cạnh thứ nhất đi qua. Nếu hai góc A và B có số đo bằng nhau, ta nói hai góc đó bằng nhau. Ta viết A B. Nếu số đo của góc A nhỏ hơn số đo của góc B thì ta nói góc A nhỏ hơn góc B. Ta viết A B. b) Các loại góc: Góc nhọn Góc vuông Góc tù Góc bẹt. 2. Các dạng toán thường gặp. Dạng 1: Đo góc. Dạng 2: So sánh hai góc. Phương pháp: + Đo các góc cần so sánh. + So sánh số đo của các góc và kết luận của bài toán. Dạng 3: Nhận biết góc vuông, góc nhọn, góc tù, góc bẹt. Phương pháp: Dựa vào số đo của góc để kết luận. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Góc. 1.1. Định nghĩa. Góc là hình gồm hai tia chung gốc. Gốc chung của 2 tia là đỉnh của góc. Hai tia là hai cạnh của góc. – Góc xOy, kí hiệu là xOy; yOx AOB; BOA. – Điểm O là đỉnh của góc. Hai tia Ox; Oy là các cạnh của góc. – Đặc biệt, khi Ox; Oy là hai tia đối nhau, ta có góc bẹt xOy. Chú ý khi viết tên góc: Dùng 3 chữ để viết các góc, chữ ở giữa là đỉnh của góc; hai chữ hai bên cùng với chữ ở giữa là tên của hai tia chung gốc tạo thành hai cạnh của góc. Trên ba chữ của tên góc có kí hiệu. 1.2. Vẽ góc. – Vẽ đỉnh và hai cạnh của góc. 1.3. Điểm trong của góc. – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Nâng cao: Công thức tính số góc khi biết n tia chung gốc 2 n n. B. BÀI TẬP TRẮC NGHIỆM 2. Các dạng toán thường gặp. Dạng 1: Nhận biết góc. Phương pháp giải: Để đọc tên và viết kí hiệu góc, ta làm như sau: Bước 1: Xác định đỉnh và 2 cạnh của góc. Bước 2: Kí hiệu góc và đọc tên. Lưu ý: Một góc có thể gọi bằng nhiều cách. Dạng 2: Xác định các điểm trong của góc cho trước. Phương pháp giải: – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Dạng 3: Đếm góc, tính số góc khi biết số tia và ngược lại. Phương pháp giải: Để đếm góc tạo thành từ n tia chung gốc cho trước, ta thường làm theo các cách sau: Cách 1: Vẽ hình và đếm các góc tao bởi tất cả các tia cho trước. Cách 2: Sử dụng công thức tính số góc khi biết n tia.
Tóm tắt lý thuyết và bài tập trắc nghiệm trung điểm của đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề trung điểm của đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Trung điểm của đoạn thẳng: Định nghĩa: Trung điểm của đoạn thẳng là điểm nằm giữa hai đầu mút của đoạn thẳng và cách đều hai đầu mút đó. Chú ý: Điểm I là trung điểm của đoạn thẳng AB. + Điểm I nằm giữa hai điểm A và B và IA IB. + Hoặc IA IB AB IA IB. + Hoặc 1 2 IA IB AB. 2. Các dạng toán thường gặp. Dạng 1: Tính độ dài đoạn thẳng. Phương pháp: Ta sử dụng: Nếu M là trung điểm của đoạn thẳng AB thì 1 2 MA MB AB. Dạng 2: Chứng tỏ một điểm là trung điểm của đoạn thẳng. Phương pháp: Để chứng tỏ điểm I là trung điểm của đoạn thẳng AB ta có 3 cách. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm đoạn thẳng, độ dài đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề đoạn thẳng, độ dài đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Đoạn thẳng AB là gì? + Đoạn thẳng AB hay đoạn thẳng BA là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. + A, B là hai đầu mút (mút) của đoạn thẳng AB. 2. Độ dài đoạn thẳng. + Mỗi đoạn thẳng có một độ dài. Khi chọn một đơn vị độ dài thì độ dài mỗi đoạn thẳng được biểu diễn bởi một số dương (thường viết kèm đơn vị). + Độ dài đoạn thẳng AB còn gọi là khoảng cách giữa hai điểm A và B. Ta quy ước khoảng cách giữa hai điểm trùng nhau bằng 0 (đơn vị). 3. So sánh độ dài hai đoạn thẳng. + Hai đoạn thẳng AB và EG có cùng độ dài. Ta viết AB EG và nói đoạn thẳng AB bằng đoạn thẳng EG. + Đoạn thẳng AB có độ dài nhỏ hơn đoạn thẳng CD. Ta viết AB CD và nói AB ngắn hơn CD. Hoặc CD AB và nói CD dài hơn AB. 4. Các dạng toán thường gặp. Dạng 1: Nhận biết đoạn thẳng. Phương pháp: Ta sử dụng định nghĩa: Đoạn thẳng AB là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. Dạng 2: Xác định số đoạn thẳng. Phương pháp: Với n điểm phân biệt cho trước n N n 2 thì số đoạn thẳng vẽ được là 1 2 n n. Dạng 3: Tính độ dài đoạn thẳng. So sánh hai đoạn thẳng. Phương pháp: + Tìm độ dài mỗi đoạn thẳng: Ta vận dụng kiến thức “Nếu điểm M nằm giữa hai điểm A và B thì AM MB AB”. + Ta so sánh các đoạn thẳng: Hai đoạn thẳng bằng nhau nếu có cùng độ dài. Đoạn thẳng lớn hơn nếu có độ dài lớn hơn. B. BÀI TẬP TRẮC NGHIỆM