Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Võ Thành Trang - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Võ Thành Trang, quận Tân Phú, thành phố Hồ Chí Minh; đề thi hình thức tự luận, gồm 01 trang với 08 bài toán, thời gian làm bài 120 phút (không kể thời gian phát đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Võ Thành Trang – TP HCM : + Để tổ chức sinh nhật cho con gái, chị Thanh đã đặt thợ làm bánh tại cửa hàng Bakery với yêu cầu bánh được làm hai tầng, mỗi tầng cao 15cm, bán kính tầng trên là15cm, đường kính tầng dưới là 40cm. Biết công thức tính thể tích hình trụ là V = πr2.h và diện tích xung quanh hình trụ là S = 2πr.h a) Tính thể tích chiếc bánh. (Làm tròn kết quả đến haichữ số thập phân) b) Hỏi với kích thước yêu cầu của chị Thanh, khi chiếc bánh được hoàn thành thì người thợ có tất cả bao nhiêu diện tích bề mặt để trang trí bánh? (Làm tròn kết quả đến hai chữ số thập phân). + Nhân dịp cuối năm, ở các siêu thị đã đưa ra nhiều hình thức khuyến mãi. – Ở siêu thị Big C giá áo sơ mi nữ nhãn hiệu Blue được giảm giá như sau: Mua áo thứ I giảm 15% so với giá niêm yết, mua áo thứ II được giảm tiếp 10% so với giá đã giảm của áothứ I, mua áo thứ III sẽ được giảm thêm 12% so với giá đã giảm của áo thứ II nên áo thứ 3 chỉ còn 269.280. – Ở siêu thị Maximax lại có hình thức giảm giá khác: Nếu mua 1 áo thì được giảm 50.000, mua áo thứ II được giảm thêm 15% so với giá đã giảm ở áo thứ I, mua áo thứ III thì chỉ phảitrả 250.000 đồng. Biết giá niêm yết của loại áo trên ở hai siêu thị là bằng nhau. a) Tìm giá niêm yết của loại áo sơ mi trên. b) Bạn Trang muốn mua 3 áo sơ mi thì nên chọn mua ở siêu thị nào để có lợi hơn và lợi hơn bao nhiêu tiền. + Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Mối liên hệ giữa áp suất khí quyển P (mmHg) và độ cao h (mét) so với mực nước biển là một hàm số bậc nhất có dạng P = a.h + b. Bạn Khang trong một lần đi Đà Lạt, tại thị trấn Bảo Lộc có độ cao 900m so với mực nước biển, bạn đo được áp suất khí quyển tại nơi nàylà 688mmHg. Khi lên đến Đà Lạt có độ cao 1,5km so với mực nước biển thì bạn Khang thấy áp suất khí quyển tại đây là 640 mmHg. Xác định hệ số a và b.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang bao gồm 02 trang với 20 câu hỏi trắc nghiệm và 05 câu hỏi tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bắc Giang: + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Hỏi số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Khi CMD = 60 độ, chứng minh rằng điểm E trên đường tròn là trọng tâm của tam giác MCD. c) Tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất khi M di chuyển trên tia đối của tia BA. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Long An
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Long An Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Long An Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Long An Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Long An đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh này bao gồm 6 bài toán dạng tự luận, được thực hiện trong thời gian 120 phút. Đề thi đi kèm với đáp án và lời giải chi tiết. Một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 của sở GD&ĐT Long An: + Trong mặt phẳng tọa độ Oxy, hai đường thẳng (d1): y = x – 3 và (d2): y = -3x + 1. Hãy vẽ đường thẳng (d1), tìm tọa độ giao điểm của (d1) và (d2), và viết phương trình đường thẳng (d) song song với (d1) và cắt trục tung tại điểm có tung độ bằng 7. + Cho tam giác ABC vuông tại A, có đường cao AH với AH = 4,8cm và AC = 8cm. Hãy tính độ dài đoạn thẳng CH và BC. + Đường bay lên của một máy bay tạo với phương nằm ngang một góc 20 độ. Để đạt độ cao 5000m, máy bay cần bay được quãng đường bao nhiêu? (kết quả làm tròn đến đơn vị mét).
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam Đề tuyển sinh chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD ĐT Quảng Nam Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam bao gồm 01 trang với 06 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi sẽ diễn ra vào ngày 23 – 25 tháng 07 năm 2020. Trích đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam: Cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3. Hãy tìm giá trị của tham số m sao cho đường thẳng (d0) : y = 4x + m cắt đường thẳng (d) tại điểm có hoành độ dương thuộc (P). Cho ba số thực dương x, y, z sao cho x + y + z = 3. Hãy tìm giá trị lớn nhất của biểu thức H = 3xy + yz2 + zx2 − x2y. Cho tam giác ABC cân tại A (AB < AC), M là trung điểm của AC, G là trọng tâm của tam giác ABM. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh rằng OG vuông góc với BM. Lấy điểm N trên cạnh BC sao cho BN = BA. Vẽ NK vuông góc với AB tại K, BE vuông góc với AC tại E, KF vuông góc với BC tại F. Hãy tính tỉ số BE/KF. Đề tuyển sinh này đòi hỏi học sinh phải có kiến thức vững chắc về Toán và khả năng suy luận logic tốt để giải quyết các bài toán phức tạp. Chúc các thí sinh sẽ mang lại kết quả tốt trong kỳ thi sắp tới.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên: Cho số nguyên dương n sao cho 2n + 1 và 3n + 1 đều là các số chính phương. Chứng minh rằng số 15n + 8 là hợp số. Bạn Chi được thưởng kẹo mỗi ngày, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận không quá 10 chiếc. Chứng minh rằng trong một số ngày liên tiếp, tổng số kẹo Chi nhận là 27 chiếc. Cho đường tròn (I;r) nội tiếp tam giác ABC. Một số điểm và đường tròn khác đã được xác định. Chứng minh hai điều kiện quan trọng về tính chất và kích thước của các đường tròn và tam giác đều. Đề tuyển sinh này giúp học sinh thử thách khả năng giải quyết vấn đề và logic trong môn Toán. Nó cung cấp cơ hội cho học sinh thể hiện kiến thức và kỹ năng một cách chi tiết và logic. Hy vọng rằng các thí sinh sẽ làm tốt trong kỳ thi sắp tới.