Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Một chiếc xe khách khởi hành từ Hà Nội và một chiếc xe tải khởi hành từ Vinh cùng một lúc và đi ngược chiều nhau. Sau khi gặp nhau, xe khách chạy thêm 2 giờ thì đến Vinh, còn xe tải chạy thêm 4 giờ 30 phút thì đến Hà Nội. Biết Hà Nội cách Vinh là 300 km, hai xe đi cùng tuyến đường. Vận tốc của xe khách bằng? + Khi tính toán thể tích căn phòng hình hộp chữ nhật, bạn An đã nhập sai chiều cao vào máy tính, An đã nhập số liệu lớn hơn 1/3 chiều cao thật. Sau khi có kết quả, An nói: “Mình đã nhầm, nhưng không sao, lại trừ bớt đi 1/3 kết quả này thì sẽ cho kết quả đúng thôi”. Bạn Bình, người đã tính đúng kết quả nói rằng: “Kết quả đó vẫn chưa đúng, An phải tiếp tục cộng thêm 8m3 nữa mới đúng”. Thể tích căn phòng bằng? + Một đoàn học sinh đi trải nghiệm ở công viên Văn Lang thành phố Việt Trì bằng ô tô. Nếu mỗi ô tô chở 22 học sinh thì thừa 1 học sinh. Nếu bớt đi 1 ô tô thì số học sinh được chia đều cho các ô tô còn lại. Biết mỗi ô tô chở không quá 30 học sinh, số học sinh của đoàn tham quan là?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Cho n là số nguyên dương thỏa mãn 3^n – 1 chia hết cho 2^2024. Chứng minh rằng n ≥ 2^2022. + Cho tam giác đều ABC có độ dài cạnh bằng 23 và đường cao AH. Trên đoạn BH lấy điểm M tùy ý (M không trùng B và H). Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. 1. Chứng minh giá trị của biểu thức MP + MQ không phụ thuộc vào vị trí của điểm M. 2. Gọi K là trung điểm của AM. a. Chứng minh rằng tứ giác PKQH là hình thoi. b. Gọi S là diện tích của hình thoi PKQH. Biết khi điểm M thay đổi thì S nhận đúng một giá trị nguyên dương. Tìm giá trị nguyên dương đó. 3. Vẽ đường tròn (O) nội tiếp tam giác ABM. Gọi D, E, F theo thứ tự là tiếp điểm của (O) với các cạnh BM, AB, AM. Vẽ DN vuông góc với EF tại N. Chứng minh BNE = MNF.
Đề học sinh giỏi Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT Mê Linh – Hà Nội : + Cho đa thức P(x) với các hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Chứng minh rằng đa thức P(x) – 2024 không có nghiệm nguyên. + Cho tam giác ABC có đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB; S, R, Q lần lượt là trung điểm của HA, HB, HC. Chứng minh rằng chín điểm D, E, F, M, N, P, S, R, Q cùng nằm trên một đường tròn. + Cho đa giác đều có 2023 đỉnh sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.
Đề HSG cấp huyện Toán 9 năm 2023 - 2024 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC nội tiếp trong đường tròn (O) đường kính BC (AB AC). Gọi E là trung điểm của AC. Tiếp tuyến tại C của đường tròn (O) cắt tia OE tại F. Đoạn thẳng BF cắt đường tròn (O) tại H. 1) Chứng minh: FH FB FE FO. 2) Chứng minh: FEH OHB. 3) Chứng minh: AH vuông góc với HE. + Tìm các cặp số nguyên (x;y) thỏa mãn phương trình: 3 2 x y x y 3 2 5 0. Cho p là số nguyên tố lớn hơn 3. Chứng minh: 2 p 1 chia hết cho 24. + Cho một đa giác đều có 2023 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2. Biết rằng có tất cả 1013 số 1 và 1010 số 2, các số trên ba đỉnh liên tiếp bất kì không đồng thời bằng nhau. Hãy tính tổng của tất cả các tích ba số trên ba đỉnh liên tiếp của đa giác trên.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Việt Trì - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm 03 trang, hình thức 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 150 phút, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Việt Trì – Phú Thọ : + Một công ty cổ phần cấp nước áp dụng định mức tiêu thụ nước mỗi người là 4m3/người/tháng và đơn giá được cho bởi bảng sau: Lượng nước tiêu thụ (m3) Giá cước (đồng/m3). Đến 4m3/người/tháng 5300. Trên 34m/người/tháng đến 36m/người/tháng 10200. Trên 36m/người/tháng 11400. Gia đình bạn An có 9 người. Trong tháng 7 năm 2017, gia đình bạn An phải trả tiền nước theo hóa đơn là 653430 đồng (hóa đơn này bao gồm thuế giá trị gia tăng (VAT) 5% và 10% phí bảo vệ môi trường). Lượng nước máy mà nhà bạn An đã sử dụng trong tháng 7 năm 2017 là? + Cho nửa đường tròn O R đường kính BC. Điểm A di động trên nửa đường tròn đã cho (A khác BC), vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB AC và nửa đường tròn O R lần lượt tại D E M. Đường thẳng AM cắt đường thẳng BC tại N. a) Chứng minh rằng AME ACN và 3 2 BC BD CE. b) Chứng minh rằng ba điểm D E N thẳng hàng. c) Xác định vị trí của điểm A trên nửa đường tròn đã cho để tam giác ABH có diện tích lớn nhất. + Trên Parabol 24 x P y lấy các điểm PQ có hoành độ lần lượt là 2 và 4. Biết M là điểm nằm trên trục Ox sao cho MP MQ nhỏ nhất. Tọa độ điểm M là?