Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 - 2023 trường THCS Giảng Võ Hà Nội Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 - 2023 trường THCS Giảng Võ Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Để đánh giá chất lượng học tập của các em ở giữa học kì 2 môn Toán, trường THCS Giảng Võ Hà Nội đã biên soạn một đề thi kiểm tra đặc biệt. Đề thi này sẽ được thực hiện vào ngày 07 tháng 03 năm 2023, kéo dài trong thời gian 90 phút. Đề thi sẽ bao gồm 05 bài toán, tổng hợp những kiến thức đã học trong suốt kỳ học vừa qua. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Cho hai tổ sản xuất có kế hoạch phải làm 800 sản phẩm, nhưng tổ I vượt mức 15% và tổ II vượt mức 10%. Sau thời gian quy định, cả hai tổ đã làm được 899 sản phẩm. Hỏi số sản phẩm mỗi tổ cần hoàn thành theo kế hoạch ban đầu là bao nhiêu? 2. Xét đường tròn (O;R) và một điểm S nằm ngoài đường tròn. Chứng minh rằng tứ giác OASB là tứ giác nội tiếp và SA.SB = SC.SD với điểm C là giao điểm của đường thẳng SD và đường tròn (O). 3. Tìm giá trị lớn nhất của biểu thức P = x^2 + y^2 với x, y là các số thực không âm thỏa mãn điều kiện (x + 1)(y + 1) = 5. Hy vọng rằng đề thi sẽ giúp các em ôn tập và củng cố kiến thức một cách hiệu quả. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Võ Trường Toản - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Võ Trường Toản, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kì 2 Toán 9 năm 2023 – 2024 trường THCS Võ Trường Toản – BR VT : + Giải bài toán bằng cách lập phương trình, hệ phương trình: Hai vòi nước cùng chảy vào bể không có nước thì sau 16 giờ đầy bể. Nếu người ta mở vòi thứ nhất chảy trong 3 giờ rồi khóa lại và mở vòi thứ hai chảy trong 6 giờ thì được 25% bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn tâm O, đường kính AB, vẽ tia tiếp tuyến Bx. M là điểm thuộc đường tròn (M khác điểm chính giữa cung AB). Tiếp tuyến tại M cắt Bx tại C. a) Chứng minh: Tứ giác BCMO nội tiếp. b) Chứng minh: AM // OC. c) Kẻ MH AB gọi I là giao điểm của AC và MH. Chứng minh: IH = IM. + Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì: A. bằng một nửa. B. gấp đôi. C. bằng nhau.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Cho phương trình: 2×2 + 3x – 2 = 0 có hai nghiệm là x1 và x2. a) Tính tổng và tích của hai nghiệm x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A = x12 + x22. + Bạn Bình tiêu thụ 10,4 ca-lo cho mỗi phút bơi và 4,8 ca-lo mỗi phút chạy bộ. Bạn Bình cần tiêu thụ tổng cộng 324 ca-lo trong 50 phút với hai hoạt động trên. Vậy bạn Bình cần bao nhiêu thời gian cho mỗi hoạt động? + Cho tam giác SMN nhọn nội tiếp đường tròn (O) (SM < SN). Ba đường cao SI, MF, NE của tam giác SMN cắt nhau tại D. a) Chứng minh EFNM là tứ giác nội tiếp. b) Đường thẳng SI cắt đường tròn (O) tại A (A khác S). Qua A vẽ đường thẳng vuông góc với SN, đường thẳng này cắt MN tại H, cắt đường tròn (O) tại K (K khác A). Chứng minh HA.HK = HM.HN. c) Gọi T là giao điểm của FE và NM; ST cắt đường tròn (O) tại C (C khác S). Chứng minh ba điểm K, F, C thẳng hàng.