Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Trần Quốc Nghĩa

Tài liệu gồm 224 trang phân dạng và hướng dẫn giải các dạng toán nguyên hàm, tích phân và ứng dụng kèm theo các bài tập trắc nghiệm và tự luận có đáp án, lời giải chi tiết. Tài liệu được biên soạn bởi thầy Trần Quốc Nghĩa. Nội dung tài liệu : Vấn đề 1 . Nguyên hàm của hàm số + Dạng 1. Dùng định nghĩa nguyên hàm + Dạng 2. Tìm nguyên hàm dựa vào bảng công thức + Dạng 3. Tìm nguyên hàm bằng phương pháp phân tích + Dạng 4. Tìm nguyên hàm bằng phương pháp đổi biến số và phương pháp sử dụng gián tiếp bảng nguyên hàm + Dạng 5. Tìm nguyên hàm bằng phương pháp đổi từng phần + Dạng 6. Tìm nguyên hàm bằng cách thêm, bớt vào biểu thức dưới dấu tích phân + Dạng 7. Nguyên hàm có điều kiện Vấn đề 2 . Tích phân + Dạng 1. Tính tích phân bằng định nghĩa + Dạng 2. Tính tích phân bằng cách sử dụng tính chất của tích phân + Dạng 3. Tính tích phân thông qua tính diện tích hình phẳng + Dạng 4. Tính tích phân hàm đa thức bằng phương pháp phân tích + Dạng 5. Tính tích phân hàm lượng giác bằng phương pháp phân tích + Dạng 6. Tính tích phân hàm hữu tỉ + Dạng 7. Tính tích phân hàm chứa dấu giá trị tuyệt đối. Tích phân min, max + Dạng 8. Tính tích phân bằng phương pháp đổi biến + Dạng 9. Tính tích phân bằng phương pháp tích phân từng phần + Dạng 10. Những bài tích phân tính được bằng nhiều phương pháp + Dạng 11. Chứng minh đẳng thức, bất đẳng thức tích phân + Dạng 12. Tích phân truy hồi + Dạng 13. Hàm số dưới dạng tích phân [ads] Vấn đề 3 . Ứng dụng nguyên hàm – tích phân + Dạng 1. Diện tích hình phẳng + Dạng 2. Thể tích + Dạng 3. Ứng dụng tích phân để tìm khoảng đơn điệu của hàm số từ đó phác họa đồ thị của hàm số + Dạng 4. Sử dụng tích phân trong chứng minh đẳng thức của nCk + Dạng 5. Sử dụng tích phân trong bài toán chuyển động + Dạng 6. Sử dụng tích phân trong tính công của lực tác dụng + Dạng 7. Sử dụng tích phân trong bài toán tăng trưởng và phát triển Vấn đề 4 . Nguyên hàm, tích phân và ứng dụng trong các đề thi Đại học – Cao đẳng – THPT Quốc gia 

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018
Tài liệu gồm 414 trang tổng hợp các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo 4 mức độ nhận thức, được phân tích và giải chi tiết. Trích dẫn tài liệu trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018 : + (THPT Quỳnh Lưu 1 – Nghệ An – Lần 2 năm 2017 – 2018) Thể tích V của khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đường tròn (C): x^2 + (y – 3)^2 = 1 xung quanh trục hoành là? + (THPT Chuyên Hạ Long – Quảng Ninh lần 2 năm 2017 – 2018) Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số f1(x) và f2(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a, x = b (tham khảo hình vẽ dưới). Công thức tính diện tích của hình (H) là? [ads] + (THPT Mộ Đức-Quảng Ngãi – lần 1 năm 2017 – 2018) Trong hệ trục tọa độ Oxy, cho parabol (P): y = x^2 và hai đường thẳng y = a, y = b (0 < a < b) (hình vẽ). Gọi S1 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = a (phần tô đen); S2 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì S1 = S2?
Hướng dẫn giải tích phân vận dụng cao trong đề thi THPTQG 2018
Tài liệu gồm 43 tuyển tập 120 câu trắc nghiệm tích phân vận dụng cao có lời giải chi tiết được trích từ các đề thi thử môn Toán năm 2018. Các bài toán được chia thành 13 vấn đề: + Vấn đề 1. Tính tích phân theo định nghĩa + Vấn đề 2. Kỹ thuật đổi biến + Vấn đề 3. Kỹ thuật tích phân từng phần + Vấn đề 4. Tính a, b, c trong tích phân + Vấn đề 5. Tính tích phân hàm phân nhánh + Vấn đề 6. Tính tích phân dựa vào tính chất + Vấn đề 7. Kỹ thuật phương trình hàm + Vấn đề 8. Kỹ thuật biến đổi + Vấn đề 9. Kỹ thuật đạo hàm đúng + Vấn đề 10. Kỹ thuật đưa về bình phương loại 1 + Vấn đề 11. Kỹ thuật đưa về bình phương loại 2 – Kỹ thuật Holder + Vấn đề 12. Kỹ thuật đánh giá AM – GM + Vấn đề 13. Tìm GTLN-GTNN của tích phân
Tuyển tập câu hỏi trắc nghiệm nguyên hàm - tích phân dùng Casio
Tài liệu gồm 62 trang hướng dẫn giải nhanh các bài toán trắc nghiệm nguyên hàm – tích phân bằng máy tính Casio, tài liệu do các thầy, cô giáo trong nhóm nhóm Casio – Latex biên tập. 1. Nguyên hàm các hàm hữu tỉ – Thầy Lê Anh Dũng a. Phương pháp bấm máy b. Các ví dụ 2. Nguyên hàm các hàm hữu tỉ – Thầy Dương Bùi Đức a. Cơ sở lí thuyết giải nguyên hàm hữu tỷ b. Thực hiện phép chia đa thức – Sử dụng máy tính Vinacal 570 es plus II 3. Nguyên hàm dạng tìm hệ số C – Thầy Phan Minh Tâm 4. Nguyên hàm dạng cho f(x) và F(a). Tính F(b) [ads] 5. Tích phân dạng đặc biệt – Thầy Huỳnh Văn Quy 6. Tích phân hàm hữu tỉ – Thầy Triệu Minh Hà 7. Tích phân của hàm lượng giác – Thầy Nguyễn Hữu Nhanh Tiến 8. Đổi biến chứa e^x – Thầy Nguyễn Vân Trường 9. Tích Phân Casio liên quan đến lnx – Thầy Nguyễn Tài Tuệ 10. Tích phân từng phần – Thầy Trần Hiếu
1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.