Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt nón, mặt trụ, mặt cầu - Hoàng Xuân Nhàn

Tài liệu gồm 102 trang, được biên soạn bởi thầy giáo Hoàng Xuân Nhàn, bao gồm lí thuyết, phương pháp giải toán, các ví dụ minh họa và bài tập chuyên đề mặt nón, mặt trụ, mặt cầu trong chương trình môn Toán 12 phần Hình học. BÀI 1 . MẶT NÓN, HÌNH NÓN, KHỐI NÓN (Trang 01). PHẦN I. LÍ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN (Trang 01). Mặt nón, hình nón và các yếu tố liên quan (Trang 01). Hình nón cụt và khối nón cụt (Trang 02). Khối ghép được tạo bởi hai hình nón chung đáy (Trang 02). Thiết diện qua trục của hình nón (Trang 03). Thiết diện vuông góc với trục hình nón (Trang 04). Thiết diện qua đỉnh hình nón và không qua trục hình nón (Trang 04). Hình nón ngoại tiếp và nội tiếp hình chóp đều (Trang 05). PHẦN II. CÁC VÍ DỤ MINH HỌA VÀ BÀI TẬP (Trang 07). Dạng 1. Mặt nón và các yếu tố liên quan (Trang 07). Dạng 2. Sự hình thành của mặt nón, hình nón (Trang 10). Dạng 3. Thiết diện qua trục của hình nón (Trang 13). Dạng 4. Thiết diện qua đỉnh và không chứa trục của hình nón (Trang 15). Dạng 5. Thiết diện vuông góc với trục của hình nón (Trang 19). Dạng 6. Hình nón ngoại tiếp và nội tiếp hình đa diện (Trang 22). Dạng 7. Max-min và bài toán thực tế (Trang 26). ĐÁP ÁN TRẮC NGHIỆM BÀI 1: MẶT NÓN, HÌNH NÓN, KHỐI NÓN (Trang 29). BÀI 2 . MẶT TRỤ, HÌNH TRỤ, KHỐI TRỤ (Trang 30). PHẦN I. LÍ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN (Trang 30). Mặt trụ và các yếu tố liên quan (Trang 30). Thiết diện vuông góc với trục hình trụ (Trang 30). Thiết diện qua trục hình trụ (Trang 31). Hình trụ cụt (hay phiến trụ) (Trang 31). Hình nêm (Trang 32). Hình trụ ngoại tiếp lăng trụ tam giác đều (Trang 32). Hình trụ nội tiếp lăng trụ tam giác đều (Trang 32). Hình trụ ngoại tiếp lăng trụ tứ giác đều (Trang 33). Hình trụ nội tiếp lăng trụ tứ giác đều (Trang 33). Hình trụ ngoại tiếp hình nón (Trang 33). Hình trụ nội tiếp hình nón (Trang 34). PHẦN II. CÁC VÍ DỤ MINH HỌA VÀ BÀI TẬP (Trang 34). Dạng 1. Hình trụ và các yếu tố cơ bản (Trang 34). Dạng 2. Sự hình thành mặt trụ, khối trụ (Trang 37). Dạng 3. Thiết diện qua trục của hình trụ (Trang 40). Dạng 4. Thiết diện song song với trục hình trụ (Trang 42). Dạng 5. Thiết diện nghiêng so với trục hình trụ (Trang 45). Dạng 6. Hình trụ ngoại tiếp, nội tiếp hình đa diện, hình nón (Trang 49). Dạng 7. Hình đa diện có tất cả cạnh chứa trong hình trụ (Trang 55). Dạng 8. Max-min và bài toán thực tế (Trang 56). ĐÁP ÁN TRẮC NGHIỆM BÀI 2: MẶT TRỤ, HÌNH TRỤ, KHỐI TRỤ (Trang 63). BÀI 3 . MẶT CẦU, KHỐI CẦU (Trang 64). PHẦN I. LÍ THUYẾT VÀ PHƯƠNG PHÁP GIẢI TOÁN (Trang 64). Mặt cầu và các công thức liên quan (Trang 64). Điểm đối với mặt cầu (Trang 64). Vị trí tương đối giữa mặt cầu và mặt phẳng (Trang 64). Vị trí tương đối giữa mặt cầu và đường thẳng (Trang 65). Mặt cầu ngoại tiếp hình chóp (Trang 66). Mặt cầu ngoại tiếp tứ diện có ba cạnh đôi một vuông góc (Trang 66). Mặt cầu ngoại tiếp hình chóp có các đỉnh cùng nhìn một cạnh dưới một góc vuông (Trang 67). Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với mặt đáy (Trang 67). Mặt cầu ngoại tiếp hình chóp đều (Trang 68). Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc mặt đáy (Trang 69). Mặt cầu nội tiếp hình chóp tam giác đều (Trang 70). Mặt cầu nội tiếp hình chóp tứ giác đều (Trang 71). Mặt cầu ngoại tiếp hình bát diện đều (Trang 72). Mặt cầu ngoại tiếp hình lăng trụ tam giác đều (Trang 72). Mặt cầu ngoại tiếp hình hộp chữ nhật (Trang 72). Mặt cầu nội tiếp hình lập phương (Trang 73). Mặt cầu nội tiếp hình nón (Trang 73). Công thức liên quan đến chõm cầu (Trang 74). PHẦN II. CÁC VÍ DỤ MINH HỌA VÀ BÀI TẬP (Trang 74). Dạng 1. Mặt cầu, khối cầu và các yếu tố cơ bản (Trang 74). Dạng 2. Mặt cầu và bài toán thực tế (Trang 76). Dạng 3. Giao tuyến giữa mặt cầu và mặt phẳng (Trang 78). Dạng 4. Mặt cầu ngoại tiếp, nội tiếp hình chóp và lăng trụ (Trang 79). Dạng 5. Mặt cầu ngoại tiếp và nội tiếp hình nón, hình trụ (Trang 87). MỘT SỐ BÀI TOÁN VẬN DỤNG, VẬN DỤNG CAO MẶT CẦU (Trang 91). ĐÁP ÁN TRẮC NGHIỆM BÀI 3: MẶT CẦU, KHỐI CẦU (Trang 97).

Nguồn: toanmath.com

Đọc Sách

Khối đa diện, nón - trụ - cầu trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 514 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm các chuyên đề: khối đa diện và thể tích khối đa diện, mặt nón – mặt trụ – mặt cầu có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng), Hình học 12 chương 2 (mặt nón – mặt trụ – mặt cầu) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 4 phần dựa theo độ khó của các câu hỏi và bài toán: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 95). + Phần 3. Mức độ vận dụng thấp (Trang 284). + Phần 4. Mức độ vận dụng cao (Trang 442). Trích dẫn tài liệu khối đa diện, nón – trụ – cầu trong các đề thi thử THPTQG môn Toán: + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì ta có thể chia hình lập phương thành? A. 4 tứ diện đều và 1 hình chóp tam giác đều. B. 5 tứ diện đều. C. 1 tứ diện đều và 4 hình chóp tam giác đều. D. 5 hình chóp tam giác đều, không có tứ diện đều. + Cho khối lập phương ABCD.A0B0C0D0. Mặt phẳng (ACC0) chia khối lập phương trên thành những khối đa diện nào? A. Hai khối lăng trụ tam giác ABC.A0B0C0 và ACD.A0C0D0. B. Hai khối chóp tam giác C0ABC và C0.ACD. C. Hai khối chóp tứ giác C0.ABCD và C0.ABB0A0. D. Hai khối lăng trụ tứ giác ABC.A0B0C0 và ACD.A0C0D0. [ads] + Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB = 2a, AD = BC = CD = a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A đến mặt phẳng (SBC) bằng 2a√15/5, tính theo a thể tích V của khối chóp S.ABCD. + Trong không gian cho đoạn thẳng AB cố định và có độ dài bằng 4. Qua các điểm A và B lần lượt kẻ các tia Ax và By chéo nhau và hợp nhau góc 30◦, đồng thời cùng vuông góc với đoạn thẳng AB. Trên các tia Ax và By lần lượt lấy các điểm M, N sao cho MN = 5. Đặt AM = a, BN = b. Biết thể tích khối tứ diện ABMN bằng √3/3. Tính giá trị biểu thức S = (a2 + b2)2. + Cho tứ diện ABCD có thể tích V. Gọi A1B1C1D1 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V1. Gọi A2B2C2D2 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B1C1D1, C1D1A1, D1A1B1, A1B1C1 và có thể tích V2, . . . cứ như vậy cho tứ diện AnBnCnDn có thể tích Vn với n là số tự nhiên lớn hơn 1. Tính giá trị của biểu thức P = lim n→+∞ (V + V1 + · · · + Vn).
Trắc nghiệm khối tròn xoay có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 326 trang tổng hợp câu hỏi và bài toán trắc nghiệm khối tròn xoay có giải chi tiết trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo các mức độ nhận thức, độ khó sắp xếp từ thấp đến cao, phù hợp với nhiều đối tượng học sinh. Trích dẫn tài liệu trắc nghiệm khối tròn xoay có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Hậu Lộc 2 – Thanh Hóa – lần 1 – năm 2017 – 2018) Trong các mệnh đề sau, mệnh đề nào đúng? A. Hình chóp có đáy là hình thang vuông thì luôn có mặt cầu ngoại tiếp. B. Hình chóp có đáy là hình thoi thì luôn có mặt cầu ngoại tiếp. C. Hình chóp có đáy là hình tứ giác thì luôn có mặt cầu ngoại tiếp. D. Hình chóp có đáy là hình tam giác thì luôn có mặt cầu ngoại tiếp. [ads] + (THPT Chuyên Lê Quý Đôn – Đà Nẵng năm 2017 – 2018) Để làm một chiếc cốc bằng thủy tinh dạng hình trụ với đáy cốc dày 1,5 cm, thành xung quanh cốc dày 0,2 cm và có thể tích thật (thể tích nó đựng được) là 480π cm3 thì người ta cần ít nhất bao nhiêu 3 cm thủy tinh? + (THPT Hoàng Hoa Thám – Hưng Yên – lần 1 năm 2017 – 2018) Người ta đặt được vào trong một hình nón hai khối cầu có bán kính lần lượt là a và 2a sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là?
240 câu trắc nghiệm khối trụ - khối nón - khối cầu - Phạm Văn Huy
Tài liệu 240 câu trắc nghiệm khối trụ – khối nón – khối cầu của tác giả Phạm Văn Huy gồm 25 trang với phần tóm tắt lý thuyết, công thức tính và bài tập trắc nghiệm, có đáp án. Trích dẫn tài liệu : + Cho hình trụ có có bán kính R. AB, CD lần lượt là hai dây cung song song với nhau và nằm trên hai đường tròn đáy và cùng có độ dài bằng R√2. Mặt phẳng (ABCD) không song song và cũng không chứa trục của hình trụ. Khi đó tứ giác ABCD là hình gì? A. Hình chữ nhật B. Hình bình hành C. Hình vuông D. Hình thoi [ads] + Một cái nồi nấu nước người ta làm dạng hình trụ không nắp chiều cao của nồi 60cm, diện tích đáy là 900π cm2. Hỏi họ cần miếng kim loại hình chữ nhật có chiều dài và chiều rộng là bao nhiêu để làm thân nồi đó? A. Chiều dài 60π cm chiều rộng 60 cm B. Chiều dài 65 cm chiều rộng 60cm C. Chiều dài 180 cm chiều rộng 60cm D. Chiều dài 30π cm chiều rộng 60cm + Cho một hình trụ (H) có trục Δ. Một mặt phẳng (P) song song với trục Δ và cách trục Δ một khoảng k. Nếu k > r thì kết luận nào sau đây là đúng: A. Mp(P) tiếp xúc với mặt trụ theo một đường sinh B. Mp(P) cắt mặt trụ theo hai đường sinh C. Mp(P) cắt mặt trụ theo một đường sinh D. Mp(P) không cắt mặt trụ
Tuyển chọn 500 câu trắc nghiệm hình học không gian - Cao Đình Tới
Tài liệu gồm 77 trang tuyển chọn 500 bài tập trắc nghiệm hình học không gian. Mục lục tài liệu: + KIẾN THỨC Công thức tính thể tích các hình Các kiến thức về tam giác Các kiến thức về tứ giác Công thức tính diện tích các hình Hệ thức lượng trong tam giác vuông Hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy Hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy Hình chóp tứ giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp tam giác đều S.ABCD Hình chóp có mặt bên vuông góc với đáy Hình chóp có 2 mặt phẳng cùng vuông góc với đáy Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp Các loại khối đa diện đều Một số công thức giải nhanh phần thể tích khối chóp [ads] + CÁC DẠNG BÀI TẬP Hình chóp cho trước đường cao Hình chóp có mặt bên vuông góc với đáy Hình chóp đều Tỉ lệ thể tích Hình chóp nâng cao Khối đa diện Hình nón Hình trụ Mặt cầu Lăng trụ + ĐÁP SỐ