Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo học kỳ 1 Toán 7 năm 2022 - 2023 trường THCS Nguyễn Hiền - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề tham khảo kiểm tra cuối học kỳ 1 môn Toán 7 năm học 2022 – 2023 trường THCS Nguyễn Hiền, quận 7, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức 30% trắc nghiệm kết hợp 70% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề tham khảo học kỳ 1 Toán 7 năm 2022 – 2023 trường THCS Nguyễn Hiền – TP HCM : + Một cửa hàng bán 500 m vải và bán hết trong 3 ngày. Ngày thứ nhất cửa hàng bán được 1 5 số vải. Ngày thứ hai cửa hàng bán được 3 8 số m vải còn lại. Tính tỉ số vải bán được của ngày thứ nhất và ngày thứ ba. + Một hồ bơi dạng hình hộp chữ nhật có kích thước trong lòng hồ là: Chiều dài 70 m, chiều rộng 30 m, chiều sâu 2m. a/ [TH – TL10] Tính thể tích của hồ bơi. b/ [VD – TL11] Tính diện tích cần lát gạch bên trong lòng hồ. + Quan sát lăng trụ đứng tứ giác FBCG.EADH ở hình bên. Cho biết mặt bên EABF là hình gì? A. Hình thoi. B. Hình thang cân. C. Hình chữ nhật. D. Hình bình hành.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 7 năm học 2018 - 2019 trường Lương Thế Vinh - Hà Nội
Nhằm giúp thầy, cô và các em học sinh lớp 7 có thêm tài liệu ôn tập chuẩn bị cho kỳ thi học kỳ 1 Toán 7 năm học 2018 – 2019, THCS. giới thiệu đến thầy, cô và các em đề kiểm tra học kỳ 1 Toán 7 năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề thi gồm 2 trang với 4 câu trắc nghiệm, 2 câu điền kết quả và 5 câu tự luận, học sinh có 90 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 7 năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Ba đơn vị kinh doanh A, B và C góp vốn theo tỉ lệ 2 : 4 : 6 sau một năm thu được tổng 1 tỉ 800 triệu đồng tiền lãi. Hỏi mỗi đơn vị được chia bao nhiêu tiền lãi biết tiền lãi được chia tỉ lệ thuận với số vốn đã góp. + Cho ΔABC nhọn có AB < AC. Lấy M là trung điểm của BC, trên tia đối của tia MA lấy điểm E sao cho MA = ME. (Vẽ đúng hình + ghi GT, KL: 0,5 điểm). a) Chứng minh: ΔMBA = ΔMCE (1 điểm). b) Kẻ AH vuông góc BC tại H. Vẽ tia Bx sao cho ABx nhận tia BC là phân giác. Tia Bx cắt tia AH tại F. Chứng minh: CE = BF (1 điểm). c) Tia Bx cắt tia CE tại K, tia CF cắt tia BE tại I. Chứng minh M, I, K thẳng hàng (0,5 điểm).
Đề kiểm tra học kỳ 1 Toán 7 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề kiểm tra học kỳ 1 Toán 7 năm học 2017 - 2018 trường THPT Tân Thành - Bình Thuận
Đề kiểm tra học kỳ 1 Toán 7 năm học 2017 – 2018 trường THPT Tân Thành – Bình Thuận gồm 4 mã đề, mỗi mã đề gồm 2 phần: + Phần 1. Trắc nghiệm: 12 câu hỏi, thời gian làm bài 20 phút. + Phần 2. Tự luận: 5 bài tập tự luận, thời gian làm bài 70 phút. Đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tam giác ABC vuông tại A, có AB = AC. Gọi K là trung điểm của cạnh BC. a) Chứng minh ΔAKB  = ΔAKC và AK ⊥ BC. b) Qua C kẻ đường vuông góc với BC tại C cắt AB tại E. Chứng minh EC//AK. [ads] + Cho đường thẳng c cắt hai đường thẳng a và b và trong các góc tạo thành có một góc so le trong bằng nhau thì: A. a / /b   B. a cắt b C. a ⊥ b   D. a//b + Số 9,56327 được làm tròn đến số thập phân thứ nhất là: A. 9,5   B. 9,5632 C. 9,6   D. 9,5633
Đề kiểm tra HK1 Toán 7 năm học 2017 - 2018 phòng GD và ĐT Nam Trực - Nam Định
Đề kiểm tra HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT Nam Trực – Nam Định gồm 8 câu trắc nghiệm và 5 câu tự luận, thời gian làm bài 90 phút. đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Tìm 3 số a, b, c biết a, b, c tỷ lệ nghịch với 2; 3; 4 theo thứ tự và a + b – c = 21. + Các cạnh x, y, z của một tam giác tỷ lệ với 2; 4; 5. Tìm độ dài các cạnh của tam giác đó biết tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm. [ads] + Cho ΔABC có cạnh AB = AC, M là trung điểm của BC. a) Chứng minh ΔABM = ΔACM. b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AC = BD. c) Chứng minh AB // CD. d) Trên nửa mặt phẳng bờ là AC không chứa điểm B, vẽ tia Ax // BC lấy điểm I ∈ Ax sao cho AI = BC. Chứng minh 3 điểm D, C, I thẳng hàng.