Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Thạch Thành Thanh Hóa

Nội dung Đề HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Thạch Thành Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG huyện lớp 7 môn Toán năm 2020 2021 Đề HSG huyện lớp 7 môn Toán năm 2020 2021 Vào ngày Thứ Ba, 30 tháng 03 năm 2021, Phòng Giáo dục và Đào tạo huyện Thạch Thành, Thanh Hóa đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán cho học sinh lớp 7 trong năm học 2020 – 2021. Đề HSG của huyện Toán lớp 7 năm 2020 – 2021 do Phòng GD&ĐT Thạch Thành – Thanh Hóa tổ chức bao gồm một trang đề với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Như vậy, kỳ thi này là cơ hội không thể bỏ lỡ cho các học sinh có niềm đam mê, đam mê môn Toán và muốn thể hiện tài năng của mình. Đề thi được thực hiện chặt chẽ, chứa đựng những câu hỏi thú vị, đòi hỏi sự khéo léo, logic và kiến thức sâu rộng từ phía các thí sinh. Điều này nhằm mục đích kiểm tra và đánh giá khả năng tư duy, logic và kiến thức Toán của học sinh, từ đó chọn ra những "chiến binh" xứng đáng nhất để tiếp tục thi đấu ở các vòng sau. Kỳ thi này cũng là nơi để thể hiện sự kiên trì, quyết tâm và kỷ luật của các em học sinh, từ việc học tập đến việc chuẩn bị cho kỳ thi. Quả là một bước quan trọng để thể hiện bản lĩnh và đam mê của bản thân.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).