Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm học 2019 - 2020 trường THCS Lê Ngọc Hân - Hà Nội

Thứ Sáu ngày 19 tháng 06 năm 2020, trường THCS Lê Ngọc Hân, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2019 – 2020. Đề khảo sát Toán 9 năm học 2019 – 2020 trường THCS Lê Ngọc Hân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, đề thi có 01 trang, thời gian làm bài thi là 120 phút. Trích dẫn đề khảo sát Toán 9 năm học 2019 – 2020 trường THCS Lê Ngọc Hân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hưởng ứng phong trào trồng cây xanh vì môi trường xanh sạch đẹp, một chi đoàn dự định trồng 600 cây xanh trong một thời gian quy định. Do mỗi ngày họ trồng được nhiều hơn dự định là 30 cây nên công việc được hoàn thành sớm hơn quy định 1 ngày. Tính số ngày mà chi đoàn dự kiến hoàn thành công việc. + Nón lá là một vật dụng để che nắng, che mưa và là một biểu tượng của phụ nữ Việt Nam. Nón lá có hình nón, đường kính đáy bằng 40cm và độ dài đường sinh là 30cm. Người ta lát mặt xung quanh hình nón bằng 3 lớp lá khô. Tính diện tích là cần dùng để tạo nên một chiếc nón như vậy (làm tròn đến cm2). + Cho phương trình: x^2 – 20x + 2m – 1 = 0. Tìm tham số m để phương trình có hai nghiệm phân biệt x1; x2 là các số nguyên tố.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 ôn thi vào lớp 10 THPT lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Cho hàm số y = (m + 2)x + n (d). a) Tìm m, n để đường thẳng (d) có hệ số góc là -1 và qua điểm A(-2;3) b) Tìm m, n để đường thẳng (d) song song với đường thẳng y = 3x – 1 và cắt đường thẳng y = 2x + 5 tại điểm có tung độ là 3. + Cho nửa đường tròn (O;R) đường kính AB. Từ điểm M tùy ý thuộc nửa đường tròn (O) (M khác A và B) vẽ tiếp tuyến dvới nửa đường tròn (O). Gọi I, K là hình chiếu của A và B trên đường thẳng d. Gọi H là hình chiếu của M trên AB. a) Chứng minh: Bốn điểm B, H, M, K cùng thuộc một đường tròn b) Chứng minh BM là tia phân giác của góc OBK và tam giác IHK vuông c) Xác định vị trí của M trên nửa đường tròn (O) để diện tích tứ giác AIKB lớn nhất. + Cho x, y > 0 và x + y ≤ 4/5. Tìm giá trị nhỏ nhất của biểu thức: M = x + y + 1/x + 1/y.
Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Long Biên – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 3 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 5 ngày thì cả hai đội hoàn thành được 25% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc? + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng: (d): y = x + 2 và (d’): y = -2x + 5 a) Tìm tọa độ giao điểm A của (d) và (d’) b) Gọi B, C lần lượt là giao điểm của (d) và (d’) với trục tung. Tính diện tích ABC. + Cho đường tròn (O;R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC = R. Trên cung nhỏ BC lấy điểm D (D khác B, C); AC cắt BD tại E; kẻ EH vuông góc với AB tại H, EH cắt AD tại I. Tia DH cắt (O;R) tại điểm thứ hai là F. a) Chứng minh bốn điểm A, H, D, E cùng thuộc một đường tròn. b) Chứng minh DHE = DFC từ đó suy ra CF vuông góc AB. c) Chứng minh BCF là tam giác đều. Xác định vị trí của D trên cung nhỏ BC để chu vi tứ giác ABDC đạt giá trị lớn nhất.
Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Ba Đình, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 21 tháng 02 năm 2023. Trích dẫn Đề kiểm tra định kì Toán 9 tháng 2 năm 2023 trường THCS Ba Đình – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Hai đội công nhân cùng làm một công việc 6 ngày xong. Nếu đội thứ nhất làm một mình trong 3 ngày và đội thứ hai làm một mình trong 2 ngày thì được 4/9 công việc. Hỏi nếu làm một mình mỗi đội bao lâu xong công việc. + Cho hình vẽ bên. Biết số đo cung EF bằng 134 độ, AOC = 70 độ. a) Tính số đo cung AmC? b) Tính góc AEC và góc AFC? c) Tính góc EIF? d) Tính góc xCE? e) Tính góc EKC? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt đường tròn tại điểm E, cắt dây BC tại I. a) Chứng minh BIA = ACE b) Chứng minh EC2 = EA.EI.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 trường THCS Phú La - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Phú La, quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 trường THCS Phú La – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai người thợ nếu cùng làm chung một công việc thì sau 12 giờ sẽ xong. Nếu người thứ nhất làm riêng trong 8 giờ rồi người thứ hai làm riêng trong 12 giờ thì cả hai người làm được 80% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu? + Cho hệ phương trình. a) Giải hệ phương trình với m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. 1) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. 2) Kẻ tiếp tuyến DE của (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. 3) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và DQ. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi.