Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2018 2019 trường THPT Lý Thánh Tông Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội, đề thi được biên soạn theo dạng đề kết hợp giữa tự luận và trắc nghiệm khách quan, vừa kiểm tra được khả năng tư duy logic, trình bày bài giải của học sinh, đồng thời phù hợp với xu hướng thi trắc nghiệm Toán hiện nay. Đề thi có mã đề 001 gồm 3 trang, phần tự luận gồm 4 câu, chiếm 6 điểm, phần trắc nghiệm gồm 20 câu, chiếm 4 điểm, tổng thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán lớp 10 năm 2018 – 2019 trường THPT Lý Thánh Tông – Hà Nội: Bất phương trình và hệ bất phương trình một ẩn: + Nhận biết: Điều kiện xác định của BPT có chứa mẫu, Giải bất phương trình đơn giản. + Thông hiểu: Giải BPT đơn giản có chứa căn thức, BPT có chứa căn thức, trị tuyệt đối. + Vận dụng: Giải bất phương trình bậc nhất một ẩn, hệ bất phương trình bậc nhất một ẩn. Dấu của nhị thức bậc nhất: + Nhận biết: Nhị thức bậc nhất. + Thông hiểu: Dấu của nhị thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương của các nhị thức bậc nhất. + Vận dụng: Bảng dấu, tìm nhị thức đúng. [ads] Dấu của tam thức bậc hai: + Nhận biết: Điều kiện để hàm số là một tam thức bậc hai. + Thông hiểu: Dấu của tam thức, Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương. + Vận dụng: Giải bất phương trình f(x) ≥ 0 với f(x) là tích, thương, Tìm m để phương trình có nghiệm hoặc vô nghiệm, thỏa mãn điều kiện cho trước, tam thức luôn dương hoặc luôn âm (với delta ở dạng bậc hai). Cung và góc lượng giác: + Nhận biết: Đổi độ sang rađian và ngược lại, Chuyển độ sang rađian và ngược lại, Tìm độ dài cung trên đường tròn. + Thông hiểu: Tìm độ dài cung trên đường tròn. Giá trị lượng giác của một cung: + Nhận biết: Kiểm tra công thức đúng – sai, Kiểm tra công thức lượng giác cơ bản, Kiểm tra công thức GTLG của các cung có liên quan đặc biệt. + Thông hiểu: Xác định dấu của GTLG, Tính giá trị lượng giác còn lại. + Vận dụng: GTLN và GTNN của một biểu thức, Tìm giá trị lượng giác của góc α, Chứng minh đẳng thức. Công thức lượng giác: + Nhận biết: Kiểm tra công thức. + Thông hiểu: Tính giá trị của biểu thức lượng giác, Tính giá trị của biểu thức lượng giác. + Vận dụng: Rút gọn biểu thức, Chứng minh đẳng thức lượng giác. Các hệ thức lượng trong tam giác và giải tam giác: + Nhận biết: Mệnh đề đúng – sai (định lý sin, định lý côsin), Tính diện tích tam giác sử dụng công thức Hê-rông. + Thông hiểu: Tìm bán kính đường tròn nội tiếp (ngoại tiếp). + Vận dụng: Tính số đo góc, bài toán thực tế. Phương trình đường thẳng: + Nhận biết: Xác định vectơ chỉ phương, vectơ pháp tuyến, Xác định điểm thuộc đường thẳng, Viết phương trình đường thẳng biết đi qua 1 điểm, biết VTCP hoặc VTPT. + Thông hiểu: Tính khoảng cách từ 1 điểm đến 1 đường thẳng, Viết phương trình đường thẳng đi qua 2 điểm. + Vận dụng: Viết phương trình đường thẳng, Viết phương trình đường thẳng thỏa mãn điều kiện cho trước. Phương trình đường tròn: + Nhận biết: Xác định tọa độ tâm và bán kính đường tròn, Viết phương trình đường tròn biết tâm và bán kính. + Thông hiểu: Phương trình đường tròn đường kính AB. + Vận dụng: Điều kiện để một phương trình trở thành phương trình đường tròn, Viết phương trình đường tròn, Viết phương trình đường tròn thỏa mãn điều kiện cho trước. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kì 2 Toán 10 năm 2021 - 2022 trường THPT Lê Lợi - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 2 môn Toán 10 năm học 2021 – 2022 trường THPT Lê Lợi, tỉnh Quảng Trị; đề thi được biên soạn theo hình thức 70% trắc nghiệm + 30% tự luận, phần trắc nghiệm gồm 35 câu (chiếm 07 điểm), phần tự luận gồm 04 câu (chiếm 03 điểm), thời gian làm bài kiểm tra là 90 phút (không kể thời gian giao đề), đề thi có đáp án và lời giải chi tiết mã đề 192 293 391 490 589 688 787 886. Trích dẫn đề cuối học kì 2 Toán 10 năm 2021 – 2022 trường THPT Lê Lợi – Quảng Trị : + Với hai điểm AB trên đường tròn định hướng, khẳng định nào sau đây đúng? A. Có vô số cung lượng giác có điểm đầu là A điểm cuối là B B. Chỉ có một cung lượng giác có điểm đầu là A điểm cuối là B C. Có đúng hai cung lượng giác có điểm đầu là A điểm cuối là B D. Có đúng bốn cung lượng giác có điểm đầu là A điểm cuối là B. + Cho bảng phân bố tần số của điểm thi môn Toán giữa kì của một lớp 10 như sau Điểm 2 3 5 6 8 9 Tần số 2 4 8 14 10 2 Mệnh đề đúng là: A. Tần suất của điểm 6 là 35%. B. Tần suất của điểm 8 là 30%. C. Tần suất của điểm 5 là 25%. D. Tần suất của điểm 2 là 10%. + Trong mặt phẳng tọa độ Oxy cho (C) là đường tròn đi qua điểm A(4;-2) và có tâm nằm trên đường thẳng d x y 3 0. Viết phương trình đường tròn (C) biết bán kính của đường tròn bằng 5.
Đề học kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Nguyễn Thị Minh Khai - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Nguyễn Thị Minh Khai, quận 3, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức tự luận, thời gian làm bài kiểm tra là 90 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học kỳ 2 Toán 10 năm 2021 – 2022 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng Oxy, cho đường thẳng x + y – 6 = 0 và ba điểm A(2;0), B(-2;0), C(1;2). a) Viết phương trình tổng quát của đường thẳng qua C và song song. b) Tìm tọa độ điểm M nằm trên đường thẳng sao cho MA MB lớn nhất. + Trong mặt phẳng Oxy viết phương trình đường tròn đi qua hai điểm A(2;1), B(3;5) và có tâm nằm trên đường thẳng (D): x + y – 16 = 0. + Trong mặt phẳng Oxy, cho elip (E): 2 2 1 9 4 x y. Tính độ dài hai trục và tọa độ hai tiêu điểm của (E).
Đề cuối kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Phan Đăng Lưu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra, đánh giá cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Phan Đăng Lưu, quận Bình Thạnh, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức tự luận, thời gian làm bài kiểm tra là 90 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề cuối kỳ 2 Toán 10 năm 2021 – 2022 trường THPT Phan Đăng Lưu – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho A(-4;5) và B(2;1). a) Viết phương trình tham số đường thẳng qua A nhận AB làm vectơ chỉ phương. b) Viết phương trình tổng quát đường trung trực của đoạn AB. + Trong mặt phẳng tọa độ Oxy. Cho đường thẳng 𝑑: 2𝑥 − 𝑦 + 5 = 0 và đường thẳng 𝛥: 3𝑥 + 4𝑦 + 1 = 0 a) Gọi 𝜑 là góc giữa đường thẳng d và đường thẳng. Tính 𝑐𝑜𝑠𝜑. b) Tính khoảng cách từ điểm 𝑀(0;1) đến đường thẳng. + Cho đường tròn 2 2 C x y x y 8 12 16 0 a) Tìm tâm và bán kính của đường tròn. b) Viết phương trình đường tròn đường kính AB với A B 1 5 5 3. c) Viết phương trình tiếp tuyến của C tại điểm M trên C có tung độ bằng 0.
Đề ôn thi học kỳ 2 Toán 10 năm 2021 - 2022 trường THPT Võ Thành Trinh - An Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề ôn tập thi kiểm tra chất lượng cuối học kỳ 2 môn Toán 10 năm học 2021 – 2022 trường THPT Võ Thành Trinh, tỉnh An Giang. Trích dẫn đề ôn thi học kỳ 2 Toán 10 năm 2021 – 2022 trường THPT Võ Thành Trinh – An Giang : + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d : 2x − y + 3 = 0 và d′ : x + 2y + 3 = 0. Khẳng định nào sau đây là đúng? A. Hai đường thẳng d, d′ cắt nhau nhưng không vuông góc. B. Hai đường thẳng d, d′ song song với nhau. C. Đường thẳng d vuông góc với đường thẳng d′. D. Hai đường thẳng d, d′ trùng nhau. + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(−4; 2), B(6; −3) và đường thẳng ∆ có phương trình 3x − 4y − 5 = 0. Gọi M là điểm thuộc đường thẳng ∆. Khi MA + MB đạt giá trị nhỏ nhất thì hoành độ của điểm M thuộc khoảng nào sau đây? + Trong mặt phẳng tọa độ Oxy, cho các điểm A(−1; 4), B(1; −2) và C(2; 0). 1 Viết phương trình tổng quát của đường thẳng AB. 2 Viết phương trình đường tròn tâm C và đi điểm A. 3 Tìm tọa độ giao điểm thức hai của đường thẳng AB với đường tròn (C).