Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập lớp 8 môn Toán

Nội dung Tóm tắt lý thuyết, các dạng toán và bài tập lớp 8 môn Toán Bản PDF - Nội dung bài viết Tóm tắt lý thuyết, các dạng toán và bài tập lớp 8 môn ToánPhần I: Đại sốPhần II: Hình học Tóm tắt lý thuyết, các dạng toán và bài tập lớp 8 môn Toán Tài liệu này bao gồm 551 trang tóm tắt lý thuyết, các dạng toán và bài tập môn Toán lớp 8, cung cấp đáp án và lời giải chi tiết. Mục lục được chia thành hai phần chính: Phần I với nội dung về Đại số và Phần II với nội dung về Hình học. Phần I: Đại số Chương 1 tập trung vào phép nhân và phép chia đa thức, bao gồm các nội dung như nhân đơn thức với đa thức, phân tích đa thức thành nhân tử bằng các phương pháp khác nhau, chia đa thức cho đơn thức, và ôn tập chương 1. Chương 2 đi sâu vào Phân thức đại số, mô tả về tính chất cơ bản của phân thức, cách rút gọn phân thức, cách quy đồng mẫu thức nhiều phân thức, và các phép tính cộng, trừ, nhân, chia phân thức. Chương 3 và Chương 4 sẽ giúp học sinh hiểu về phương trình bậc nhất, bất phương trình, các kiến thức về thứ tự, dấu giá trị tuyệt đối, và giải bài toán bằng phương trình. Phần II: Hình học Chương 1 bàn về các loại hình tứ giác, hình thang, hình thang cân, đường trung bình của tam giác và hình thang, đối xứng trục, hình bình hành, hình chữ nhật, hình vuông, và các phép biến đổi hình học. Chương 2 tập trung vào đa giác và diện tích các hình đa giác khác nhau, giúp học sinh hiểu rõ về tính chất và tính diện tích của các hình học khác nhau. Chương 3 và Chương 4 giới thiệu các kiến thức về tam giác đồng dạng, các hình lăng trụ đứng và các hình chóp đều, kèm theo công thức tính diện tích xung quanh và thể tích của chúng. Đây là tài liệu cực kỳ hữu ích cho học sinh lớp 8 để nắm vững kiến thức cơ bản và áp dụng chúng vào các dạng toán và bài tập thực tế.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phương trình chứa ẩn ở mẫu
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình chứa ẩn ở mẫu, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ + Bước 1: Tìm điều kiện xác định (viết tắt là ĐKXĐ) của phương trình (tức là tìm giá trị của ẩn làm tất cả các mẫu thức của phương trình khác 0). + Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được. + Bước 4: Trong các giá trị tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. II. BÀI TẬP MINH HỌA Vận dụng phương pháp giải phưng trình chứa ẩn ở mẫu, đưa về phương trình bậc nhất đã biết.
Chuyên đề phương trình tích
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình tích, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Phương trình tích (một ẩn) là phương trình có dạng A(x).B(x)…. = 0. Trong đó A(x) và B(x) là các đa thức. Để giải phương trình này ta chỉ cần giải từng phương trình A(x) = 0, B(x) = 0 … rồi lấy tất cả các nghiệm của chúng. Các phương pháp phân tích đa thức thành nhân tử có vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Cách đặt ẩn phụ cũng hay được sử dụng để trình bày cho lời giải gọn gàng hơn. II. BÀI TẬP Vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích đưa phương trình đã cho về các phương trình bậc nhất đã biết cách giải.
Chuyên đề mở đầu về phương trình
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề mở đầu về phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN 1. Phương trình một ẩn. 2. Giải phương trình. 3. Phương trình tương đương. B. BÀI TẬP MINH HỌA CƠ BẢN Dạng toán 1: Giải phương trình. Dạng toán 2: Hai phương trình tương đương. C. BÀI TẬP NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Biến đổi các biểu thức hữu tỉ. + Biểu thức hữu tỉ là một phân thức hoặc biểu thị một dãy các phép toán: cộng, trừ, nhân chia trên những phân thức. + Biến đổi một hiểu thức hữu tỉ thành một phân thức nhờ các quy tắc của phép toán cộng, trừ, nhân, chia các phân thức đã học. 2. Giá trị của phân thức. + Giá trị của một phân thức chỉ đuợc xác định với điều kiện giá trị của mẫu thức khác 0. + Chú ý: Biểu thức hữu tỉ có hai biến x và y thì giá trị của biểu thức đó chi đuợc xác định với các cặp số (x;y) làm cho giá trị của mẫu thức khác 0. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm điều kiện xác định của phân thức. Ta xác định các giá trị của biến để mẫu thức khác 0. Dạng 2 : Biến đổi biểu thức hữu tỷ thành phân thức. + Bước 1. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. + Bước 2. Biến đổi cho tới khi được một phân thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 3 : Thực hiện phép tính với các biểu thức hữu tỷ. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. Dạng 4 : Tìm x để giá trị của một phân thức đã cho thỏa mãn điều kiện cho trước. Ta sử dụng các kiến thức sau: + A/B > 0 khi và chỉ khi A và B cùng dấu. + A/B < 0 khi và chỉ khi A và B trái dấu. + Hằng đẳng thức đáng nhớ và chú ý a^2 >= 0 với mọi giá trị của a. + Với a; b thuộc Z và b khác 0 ta có: a/b thuộc Z khi và chỉ khi b thuộc Ư(a).