Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác

Tài liệu gồm 33 trang, tóm tắt lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 2. Bài 1. Đa giác và đa giác đều. + Dạng 1. Nhận biết đa giác. + Dạng 2. Tính chất về góc của đa giác. + Dạng 3. Tính chất về số đường chéo của đa giác. + Dạng 4. Đa giác đều. Bài 2. Diện tích hình chữ nhật. + Dạng 1. Tính chất diện tích đa giác. + Dạng 2. Tính diện tích hình chữ nhật. + Dạng 3. Diện tích hình vuông. + Dạng 4. Diện tích tam giác vuông. Bài 3. Diện tích tam giác. + Dạng 1. Cắt và ghép hình. Giải thích công thức tính diện tích tam giác. + Dạng 2. Tính toán, chứng minh về diện tích tam giác. + Dạng 3. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. + Dạng 4. Sử dụng công thức diện tích để chứng minh các hệ thức. + Dạng 5. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. + Dạng 6. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 4. Diện tích hình thang. + Dạng 1. Tính diện tích hình thang. + Dạng 2. Tính diện tích hình bình hành. + Dạng 3. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 5. Diện tích hình thoi. + Dạng 1. Tính diện tích tứ giác có hai đường chéo vuông góc. + Dạng 2. Tính diện tích hình thoi. + Dạng 3. Tìm diện tích lớn nhất(nhỏ nhất) của một hình. Bài 6. Diện tích đa giác. + Dạng 1. Tính diện tích đa giác. + Dạng 2. Dựng tam giác có diện tích bằng diện tích của một đa giác.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình tích
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình tích, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Phương trình tích (một ẩn) là phương trình có dạng A(x).B(x)…. = 0. Trong đó A(x) và B(x) là các đa thức. Để giải phương trình này ta chỉ cần giải từng phương trình A(x) = 0, B(x) = 0 … rồi lấy tất cả các nghiệm của chúng. Các phương pháp phân tích đa thức thành nhân tử có vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Cách đặt ẩn phụ cũng hay được sử dụng để trình bày cho lời giải gọn gàng hơn. II. BÀI TẬP Vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích đưa phương trình đã cho về các phương trình bậc nhất đã biết cách giải.
Chuyên đề mở đầu về phương trình
Tài liệu gồm 18 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề mở đầu về phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN 1. Phương trình một ẩn. 2. Giải phương trình. 3. Phương trình tương đương. B. BÀI TẬP MINH HỌA CƠ BẢN Dạng toán 1: Giải phương trình. Dạng toán 2: Hai phương trình tương đương. C. BÀI TẬP NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Biến đổi các biểu thức hữu tỉ. + Biểu thức hữu tỉ là một phân thức hoặc biểu thị một dãy các phép toán: cộng, trừ, nhân chia trên những phân thức. + Biến đổi một hiểu thức hữu tỉ thành một phân thức nhờ các quy tắc của phép toán cộng, trừ, nhân, chia các phân thức đã học. 2. Giá trị của phân thức. + Giá trị của một phân thức chỉ đuợc xác định với điều kiện giá trị của mẫu thức khác 0. + Chú ý: Biểu thức hữu tỉ có hai biến x và y thì giá trị của biểu thức đó chi đuợc xác định với các cặp số (x;y) làm cho giá trị của mẫu thức khác 0. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm điều kiện xác định của phân thức. Ta xác định các giá trị của biến để mẫu thức khác 0. Dạng 2 : Biến đổi biểu thức hữu tỷ thành phân thức. + Bước 1. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. + Bước 2. Biến đổi cho tới khi được một phân thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 3 : Thực hiện phép tính với các biểu thức hữu tỷ. Sử dụng kết hợp các quy tắc cộng, trừ, nhân, chia phân thức đại số đã học để biến đổi. Dạng 4 : Tìm x để giá trị của một phân thức đã cho thỏa mãn điều kiện cho trước. Ta sử dụng các kiến thức sau: + A/B > 0 khi và chỉ khi A và B cùng dấu. + A/B < 0 khi và chỉ khi A và B trái dấu. + Hằng đẳng thức đáng nhớ và chú ý a^2 >= 0 với mọi giá trị của a. + Với a; b thuộc Z và b khác 0 ta có: a/b thuộc Z khi và chỉ khi b thuộc Ư(a).
Chuyên đề phép chia các phân thức đại số
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép chia các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Sử dụng quy tắc chia để thực hiện phép tính. Phương pháp giải: Áp dụng công thức: A/B : C/D = A/B . D/C với C/D ≠ 0. Chú ý: + Đối với phép chia có nhiều hơn hai phân thức, ta vẫn nhân với nghịch đảo của các phân thức đứng sau dấu chia theo thứ tự từ trái sang phải. + Ưu tiên tính toán đối vói biểu thức trong dấu ngoặc trước (nếu có). Dạng 2 . Tìm phân thức thỏa mãn đẳng thức cho trước. + Bước 1. Đưa phân thức cần tìm về riêng một vế. + Bước 2. Sử dụng quy tắc nhân và chia các phân thức đại số, từ đó suy ra phân thức cần tìm. Dạng 3 . Bài toán nâng cao.