Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Nam

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Sở GD&ĐT Quảng Nam Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Sở GD&ĐT Quảng Nam Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Quảng Nam. Kỳ thi sẽ diễn ra vào ngày 19 tháng 04 năm 2023. Tóm tắt nội dung đề thi: Cho tam giác ABC nhọn (AB < AC) có hai đường cao BE và CF, M là trung điểm của BC. Hạ MN vuông góc với EF tại N, hai đường thẳng MN và AB cắt nhau tại D. a) Chứng minh N là trung điểm của EF và DEF = MEC. b) Gọi K là giao điểm của hai đường thẳng AM và EF, L là giao điểm của hai đường thẳng AN và BC. Chứng minh KL vuông góc với BC. Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn (O), đường phân giác trong AD (D thuộc BC) cắt đường tròn (O) tại E (E khác A). Hạ BH vuông góc với AE tại H, đường thẳng BH cắt đường tròn (O) tại F (F khác B). Đường thẳng EF cắt hai đuờng thẳng AC, BC lần lượt tại K, M; hai đường thẳng OE và HK cắt nhau tại L. a) Chứng minh tứ giác AHKF nội tiếp trong đường tròn. b) Chứng minh HB.LE = HE.LK. c) Hai tiếp tuyến của đường tròn ngoại tiếp tam giác ADM tại A, M cắt nhau tại Q; tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại P. Chứng minh PQ song song với AD. Tìm tất cả các cặp số nguyên tố (p;q) thỏa mãn: p2 − 1 chia hết cho q và q2 – 4 chia hết cho p.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG lần 1 Toán 9 năm 2017 - 2018 trường THCS Thanh Lãng - Vĩnh Phúc
Đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc : + Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5. + Cho ABC nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F. a) Chứng minh rằng: AE.AB = AF.AC b) Giả sử HD = 1 3 AD. Chứng minh rằng: tanB.tanC = 3 c) Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK. Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng. + Cho a, b, c là 3 số dương thỏa mãn điều kiện 1 1 1 2 a + b + 1 b + c + 1 c + a + 1 Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).
Đề học sinh giỏi huyện Toán 9 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho các số thực x y z thỏa mãn đồng thời các điều kiện 2 22 x y z xy yz zx và 2015 2015 2015 2016 xyz 3. Tìm x y z. + Cho x, y là hai số không âm thỏa mãn điều kiện 2 2 xy x y 1. Tính giá trị của biểu thức: 2 2 Tx y y x 1 1. + Cho đường tròn O R và đường thẳng d cố định, d không có điểm chung với đường tròn. Gọi M là điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA MB tới đường tròn (A B là các tiếp điểm). Từ O kẻ OH vuông góc với đường thẳng d H d. Nối A với B AB cắt OH tại K và cắt OM tại I. Tia OM cắt O R tại E. a) Chứng minh rằng năm điểm AOBHM cùng thuộc một đường tròn. b) Chứng minh rằng OK OH OI OM. c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB. d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK đạt giá trị lớn nhất.
Đề học sinh giỏi huyện Toán 9 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho biểu thức x x x x A 2 4 3 2 với x 0 1 x. a) Rút gọn biểu thức A. b) Tìm giá trị lớn nhất của biểu thức A. + Cho hàm số bậc nhất 2 y 1 3m x 5m 2 (1) và đường thẳng d: y 2x 3. a) Tìm giá trị của tham số m để hàm số (1) là hàm số đồng biến trên. b) Tìm giá trị của tham số m để đồ thị hàm số 2 y 1 3m x 5m 2 và đường thẳng d cắt nhau tại một điểm trên trục tung. c) Tìm trên đường thẳng d những điểm có tọa độ thoả mãn đẳng thức 2 2 x y xy 2 40. + Cho m là một số nguyên. Chứng minh rằng: a) 5 m m chia hết cho 30. b) Biểu thức 532 7 30 6 2 10 mmm m P là một số nguyên.
Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.