Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết

giới thiệu đến bạn đọc tài liệu bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết, đây là các bài toán hay được đóng góp bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC nhằm tạo nguồn đề tham khảo bổ ích để các em có thể rèn luyện nhiều hơn với các bài toán tổ hợp và xác suất ở mức độ khó và rất khó. Tài liệu phù hợp với các em học sinh khối 11 học nâng cao, các em học sinh lớp 12 ôn thi THPTQG môn Toán và các em học sinh ôn thi HSG Toán. Trích dẫn tài liệu bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết : + Nhân ngày phụ nữ Việt Nam 20/10, các bạn nam lớp 10A đến cửa hàng hoa để mua hoa tặng các cô giáo dạy lớp mình. Cửa hàng hoa có bán ba loại hoa: hoa hồng, hoa cẩm chướng và hoa đồng tiền ( số hoa mỗi loại đều lớn hơn hoặc bằng 8). Nhóm 8 bạn nam vào cửa hàng và chọn 8 bông hoa. Hỏi các bạn nam có bao nhiêu cách chọn số lượng từng loại hoa? [ads] + Cho một lưới gồm các ô vuông kích thước 10 x 6 như hình vẽ sau đây. Một người đi từ A đến B theo quy tắc: chỉ đi trên cạnh của các ô vuông theo chiều từ trái qua phải hoặc từ dưới lên trên. Hỏi có bao nhiêu đường đi khác nhau để người đó đi từ A đến B đi qua điểm C? + Một chuồng có 3 con mèo trắng và 4 con mèo đen. Người ta bắt ngẫu nhiên lần lượt từng con ra khỏi chuồng cho đến khi nào bắt được 3 con mèo trắng mới thôi. Tính xác xuất để cần phải bắt ít nhất 5 con mèo.

Nguồn: toanmath.com

Đọc Sách

Bài tập đạo hàm - Trần Sĩ Tùng
Tài liệu gồm 7 tuyển chọn các bài tập đạo hàm, nội dung tài liệu gồm các vấn đề: + Vấn đề 1. Tính đạo hàm bằng định nghĩa + Vấn đề 2. Tính đạo hàm bằng công thức + Vấn đề 3.Phương trình tiếp tuyến của đồ thị (C) của hàm số y = f(x) + Vấn đề 4. Tính đạo hàm cấp cao + Vấn đề 5. Tính giới hạn hàm sinu(x)/u(x) + Vấn đề 6. Các bài toán khác [ads]
Bài tập trắc nghiệm khoảng cách có đáp án và lời giải
Tài liệu gồm 82 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn 114 câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết về các chủ đề: khoảng cách từ một điểm đến một mặt phẳng, đến một đường thẳng; khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song; khoảng cách giữa hai đường thẳng chéo nhau … trong chương trình Hình học 11 chương 3. Mục lục tài liệu bài tập trắc nghiệm khoảng cách có đáp án và lời giải: Phần A . Câu hỏi và bài tập trắc nghiệm. Dạng 1. Khoảng cách của hai điểm và các bài toán liên quan (Trang 1). Dạng 2. Khoảng cách từ một điểm đến một mặt phẳng (Trang 3). + Khoảng cách từ hình chiếu của đỉnh đến mặt phẳng bên (Trang 3). + Khoảng cách từ một điểm bất kỳ đến mặt phẳng (Trang 6). Dạng 3. Khoảng cách của hai đường thẳng (Trang 11). Phần B . Lời giải chi tiết. Dạng 1. Khoảng cách của hai điểm và các bài toán liên quan (Trang 18). Dạng 2. Khoảng cách từ một điểm đến một mặt phẳng (Trang 22). + Khoảng cách từ hình chiếu của đỉnh đến mặt phẳng bên (Trang 22). + Khoảng cách từ một điểm bất kỳ đến mặt phẳng (Trang 34). Dạng 3. Khoảng cách của hai đường thẳng (Trang 54). [ads] Trích dẫn bài tập trắc nghiệm khoảng cách có đáp án và lời giải: + Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu H của A trên mặt phẳng (A’B’C’) là trung điểm của B’C’. Tính theo a khoảng cách giữa hai mặt phẳng đáy của lăng trụ ABC.A’B’C’. + Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = OC = 2a. Gọi M là trung điểm của cạnh BC. Khoảng cách giữa hai đường thẳng OM và AC bằng? + Cho khối chóp S.ABCD có đáy là hình vuông, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích 84pi cm2. Khoảng cách giữa hai đường thẳng SA và BD là?
Bài tập trắc nghiệm hai mặt phẳng vuông góc có đáp án và lời giải
Tài liệu gồm 70 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn 108 câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết về chủ đề hai mặt phẳng vuông góc trong chương trình Hình học 11 chương 3, giúp học sinh khối 11 học tốt chủ đề quan hệ vuông góc trong không gian, học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm hai mặt phẳng vuông góc có đáp án và lời giải: Phần A . Câu hỏi và bài tập trắc nghiệm. Dạng 1. Câu hỏi lý thuyết (Trang 1). Dạng 2. Xác định quan hệ vuông góc giữa hai mặt phẳng, mặt phẳng với đường thẳng, đường thẳng với đường thẳng (Trang 4). + Đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng (Trang 4). + Hai mặt phẳng vuông góc (Trang 4). Dạng 3. Xác định góc giữa hai mặt phẳng (Trang 6). + Góc của mặt phẳng bên với mặt phẳng đáy (Trang 6). + Góc của hai mặt phẳng bên (Trang 10). + Góc của hai mặt phẳng khác (Trang 13). Dạng 4. Một số câu hỏi liên quan (Trang 15). [ads] Phần B . Lời giải chi tiết. Dạng 1. Câu hỏi lý thuyết (Trang 18). Dạng 2. Xác định quan hệ vuông góc giữa hai mặt phẳng, mặt phẳng với đường thẳng, đường thẳng với đường thẳng (Trang 19). + Đường thẳng vuông góc với mặt phẳng, đường thẳng vuông góc với đường thẳng (Trang 19). + Hai mặt phẳng vuông góc (Trang 21). Dạng 3. Xác định góc giữa hai mặt phẳng (Trang 26). + Góc của mặt phẳng bên với mặt phẳng đáy (Trang 26). + Góc của hai mặt phẳng bên (Trang 42). + Góc của hai mặt phẳng khác (Trang 53). Dạng 4. Một số câu hỏi liên quan (Trang 62).
Bài tập trắc nghiệm đường thẳng vuông góc với mặt phẳng có đáp án và lời giải
Tài liệu gồm 67 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn 111 câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết về chủ đề đường thẳng vuông góc với mặt phẳng trong chương trình Hình học 11 chương 3; giúp học sinh khối 11 học tốt chủ đề: quan hệ vuông góc trong không gian và học sinh khối 12 ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm đường thẳng vuông góc với mặt phẳng có đáp án và lời giải: Phần A . Câu hỏi và bài tập trắc nghiệm. Dạng 1. Câu hỏi lý thuyết (Trang 1). Dạng 2. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng (Trang 3). + Đường thẳng vuông góc với mặt phẳng (Trang 3). + Đường thẳng vuông góc với đường thẳng (Trang 4). Dạng 3. Xác định góc của đường thẳng và mặt phẳng (Trang 4). + Góc của cạnh bên với mặt phẳng đáy (Trang 4). + Góc giữa cạnh bên với mặt phẳng bên (Trang 10). + Góc giữa đường thẳng khác với mặt phẳng (Trang 14). Dạng 4. Một số bài toán liên quan khác (Trang 17). [ads] Phần B . Lời giải chi tiết. Dạng 1. Câu hỏi lý thuyết (Trang 19). Dạng 2. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng (Trang 19). + Đường thẳng vuông góc với mặt phẳng (Trang 19). + Đường thẳng vuông góc với đường thẳng (Trang 24). Dạng 3. Xác định góc của đường thẳng và mặt phẳng (Trang 26). + Góc của cạnh bên với mặt phẳng đáy (Trang 26). + Góc giữa cạnh bên với mặt phẳng bên (Trang 40). + Góc giữa đường thẳng khác với mặt phẳng (Trang 52). Dạng 4. Một số bài toán liên quan khác (Trang 60).