Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn

Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Cho 2021 tấm thẻ được đánh số theo thứ tự từ 1 đến 2021 (mỗi tấm thẻ được đánh duy nhất một số và không có hai thẻ nào có số giống nhau). Các tấm thẻ được úp xuống mặt bàn và không nhìn thấy số trên thẻ. Bốc ngẫu nhiên 1 tấm thẻ, tính xác xuất để số ghi trên tấm thẻ a) Chia hết cho cả 6 và 15. b) Chia hết cho 2, hoặc chia hết cho 3 hoặc chia hết cho 5. + Một cửa hàng bán quýt loại I với giá là 50.000 đồng/kg. Với giá bán này thì cửa hàng chỉ bán được khoảng 40kg mỗi ngày. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm 5000 đồng/kg thì số quýt bán được tăng thêm là 50kg. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập mỗi kg quýt ban đầu là 30.000 đồng? + Cho hàm số 2 2 1 x y x có đồ thị C. Cho d là tiếp tuyến của C tại điểm M x y 0 0 d cắt hai đường tiệm cận của C lần lượt tại A và B. Tính độ dài IA IB theo 0 x (I là giao điểm của hai đường tiệm cận) và tìm bán kính lớn nhất của đường tròn nội tiếp tam giác IAB.

Nguồn: sytu.vn

Đọc Sách

Đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp
giới thiệu đến bạn đọc đề Toán chọn đội tuyển học sinh giỏi dự thi cấp Quốc gia năm 2019 của sở GD và ĐT Đồng Tháp, đề gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thí sinh làm bài trong 180 phút, kỳ thi được tổ chức ngày 12/07/2018, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề Toán chọn đội tuyển học sinh giỏi dự thi Quốc gia 2019 sở GD và ĐT Đồng Tháp : + Cho bảng ô vuông gồm m hàng và n cột. Tại ô góc trên bên trái của bảng người ta đặt một quân cờ. Hai người chơi luân phiên di chuyển quân cờ, mỗi lượt di chuyển chỉ di chuyển quân cờ sang phải một ô hoặc xuống dưới một ô. Người chơi nào đến lượt mình không di chuyển được quân cờ thì thua. Xác định điều kiện của m n, để người thực hiện lượt chơi đầu tiên luôn là người thắng. [ads] + Cho đường thẳng d và điểm A cố định không thuộc d, H là hình chiếu của A trên d. Các điểm B, C thay đổi trên d sao cho HB.HC = -1. Đường tròn đường kính AH cắt AB, AC lần lượt tại M, N. Chứng minh đường thẳng MN đi qua một điểm cố định. Gọi O là tâm đường tròn ngoại tiếp tam giác BMC. Chứng minh O chạy trên một đường thẳng cố định. + Xét phương trình x^31 + y^5 = z^2018. Chứng minh rằng tồn tại vô số bộ ba số nguyên x, y, z thỏa mãn phương trình trên. Có tồn tại hay không bộ ba số nguyên dương x, y, z thoả mãn phương trình trên?
Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình
Đề chọn đội tuyển dự HSG Quốc gia 2019 môn Toán sở GD và ĐT Quảng Bình gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra ngày 21/08/2018, đề thi có lời giải chi tiết. Các dạng toán được đề cập trong đề gồm: Dãy số và giới hạn của dãy số, Bài toán hình học phẳng liên quan đến đường tròn, Bất đẳng thức, Bài toán chia hết.
Đề minh họa kỳ thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7