Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên

Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề cách ghi số tự nhiên Bản PDF Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 6 bộ tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề về cách ghi số tự nhiên. Trong bộ tài liệu này, các bài toán được tổ chức và phân loại theo các dạng toán khác nhau, từ cơ bản đến nâng cao, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán.

A. TÓM TẮT LÝ THUYẾT
- Trong hệ thập phân, mọi số tự nhiên được biểu diễn bằng các chữ số từ 0 đến 9, với mỗi chữ số ứng với một hàng.
- Mỗi 10 đơn vị ở một hàng sẽ tương đương với 1 đơn vị của hàng liền trước.
- Ngoài cách ghi số trong hệ thập phân, còn có cách ghi bằng số La Mã, với các kí hiệu I, V, X, IV, IX tương ứng với các giá trị nhất định.

B. BÀI TẬP TRẮC NGHIỆM
Bộ tài liệu này bao gồm các bài tập trắc nghiệm được phân chia thành các mức độ:
I. Mức độ nhận biết
II. Mức độ hiểu biết
III. Mức độ áp dụng
IV. Mức độ áp dụng cao

Qua các bài tập, các em sẽ có cơ hội rèn luyện kỹ năng giải toán, nâng cao kiến thức toán học của mình. File WORD dành cho quý thầy cô sẽ giúp họ tiện lợi trong việc sử dụng và giảng dạy.

Hy vọng rằng bộ tài liệu này sẽ giúp các em học sinh lớp 6 hiểu sâu hơn về cách ghi số tự nhiên và là công cụ hữu ích trong quá trình học tập của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phép cộng phân số, tính chất cơ bản của phép cộng phân số
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép cộng phân số, tính chất cơ bản của phép cộng phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu các quy tắc thực hiện phép toán cộng: Cộng hai phân số cùng mẫu, cộng hai phân số không cùng mẫu. + Nắm vững các tính chất của phép cộng phân số. Kỹ năng: + Thực hiện được phép toán cộng đối với phân số: Cộng hai phân số cùng mẫu, cộng hai phân số khác mẫu. + Thành thạo quy đồng và rút gọn phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép cộng các phân số. Cộng hai phân số cùng mẫu: Cộng các tử và giữ nguyên mẫu. Cộng hai phân số không cùng mẫu: + Bước 1: Rút gọn phân số (nếu có phân số chưa tối giản). + Bước 2: Quy đồng mẫu số các phân số. + Bước 3: Thực hiện phép cộng của hai phân số cùng mẫu. Chú ý rút gọn kết quả. Thực hiện phép cộng nhiều phân số: Áp dụng tính chất cơ bản của phép cộng phân số: + Tính chất giao hoán. + Tính chất kết hợp. + Cộng với số 0. Dạng 2 . So sánh tổng với một số. Đánh giá các số hạng của tổng đều lớn hơn hoặc nhỏ hơn một số nào đó. Đếm số số hạng của tổng. Từ đó suy ra kết luận. Dạng 3 . Tìm số chưa biết trong một đẳng thức.
Chuyên đề so sánh phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề so sánh phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững cách so sánh hai phân số cùng mẫu, hai phân số khác mẫu. + Hiểu khái niệm phân số âm và phân số dương. Kĩ năng: + Biết so sánh hai phân số. + Biết cách sắp xếp dãy các phân số theo thứ tự tăng dần hoặc giảm dần. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : So sánh các phân số cùng mẫu. Bài toán 1. So sánh các phân số. + Bước 1. Viết phân số có mẫu âm (nếu có) thành phân số có mẫu dương. + Bước 2. So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn. Bài toán 2. Sắp xếp các phân số. + Bước 1. So sánh các phân số. + Bước 2. Sắp xếp các phân số theo thứ tự yêu cầu của bài toán. Dạng 2 : So sánh các phân số không cùng mẫu. Cách 1. Quy đồng mẫu. + Bước 1. Quy đồng mẫu số các phân số (biến đổi thành các phân số có cùng mẫu dương). + Bước 2. So sánh các phân số có cùng mẫu dương. Cách 2. Quy đồng tử. Cách 3. Sử dụng phân số trung gian. Ngoài ra, còn một số phương pháp khác để so sánh hai phân số: + Rút gọn phân số. + Sử dụng định nghĩa hai phân số bằng nhau.
Chuyên đề quy đồng mẫu nhiều phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề quy đồng mẫu nhiều phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được thế nào là quy đồng mẫu nhiều phân số. + Nắm được các bước tiến hành quy đồng mẫu nhiều phân số. Kĩ năng: + Biết cách quy đồng được mẫu nhiều phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Quy đồng mẫu các phân số. Muốn quy đồng mẫu số nhiều phân số ta làm như sau: + Bước 1. Tìm một bội chung của các mẫu (thường là BCNN) để làm mẫu chung. + Bước 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu). + Bước 3. Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng. Chú ý: Trước khi quy đồng cần viết phân số dưới dạng phân số có mẫu dương. Nên rút gọn các phân số trước khi quy đồng. Dạng 2 : Bài toán đưa về việc quy đồng mẫu số các phân số. Để kiểm tra hai phân số có bằng nhau hay không ta đưa phân số về chung mẫu. Hai phân số có tử mẫu bằng nhau thì bằng nhau. Hai cách có thể dùng để đưa hai phân số về chung mẫu là: + Cách 1. Rút gọn phân số. + Cách 2. Quy đồng mẫu số. Để tìm số nguyên x trong đẳng thức về phân số ta có thể quy đồng mẫu sau đó tìm x để các tử số bằng nhau.
Chuyên đề tính chất cơ bản của phân số, rút gọn phân số
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất cơ bản của phân số, rút gọn phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững tính chất cơ bản của phân số. + Nắm được cách rút gọn phân số. + Hiểu được khái niệm phân số tối giản. Kĩ năng: + Viết được phân số có mẫu âm thành phân số bằng nó có mẫu dương. + Vận dụng tính chất của phân số để so sánh, rút gọn các phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm số chưa biết trong đẳng thức của phân số. Nhân hoặc chia cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Dạng 2 . Rút gọn phân số – rút gọn biểu thức dạng phân số. Để rút gọn phân số ta chia cả tử và mẫu của nó cho một ước chung (khác 1 và -1) của chúng. Khi nói rút gọn một phân số, ta thường hiểu là đưa phân số đó về dạng tối giản. Để rút gọn phân số 0 a b b thành phân số tối giản, ta làm như sau: + Bước 1. Tìm ƯCLN(a;b) = n. + Bước 2. Chia cả tử và mẫu cho n. Dạng 3 . Phân số bằng nhau. Dạng 4 . Biểu diễn các số đo dưới dạng phân số với đơn vị cho trước. Dựa vào tỉ lệ của các đại lượng mà ta chuyển về dạng phân số. Dạng 5 . Phân số tối giản. Phân số a/b tối giản nếu |a| và |b| là hai số nguyên tố cùng nhau, hay ƯC(a;b) = {-1;1}. Chứng minh phân số a/b tối giản: Ta chứng minh ƯCLN(a;b) = 1.