Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

200 câu vận dụng cao đạo hàm ôn thi THPT môn Toán

Tài liệu gồm 20 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 200 câu vận dụng cao (VDC) đạo hàm có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 200 câu vận dụng cao đạo hàm ôn thi THPT môn Toán: + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng (d): y = −2x + m − 1 (m là tham số thực). Gọi k1, k2 là hệ số góc của tiếp tuyến tại giao điểm của (d) và (C). Khi đó k1 · k2 bằng? + Cho hàm số y = 2x/(x + 2) có đồ thị (C). Gọi M(xM; yM), N(xN ; yN ) (xN < 0) là các điểm trên đồ thị (C) sao cho tiếp tuyến với (C) tại M, N song song với nhau, đồng thời khoảng cách giữa hai tiếp tuyến này là lớn nhất. Tính x2N + x2M. + Cho hàm số y = f(x) khác hàm hằng, xác định trên R, có đạo hàm tại mọi điểm thuộc R và đạo hàm xác định trên R. Xét 4 mệnh đề sau: (I) Số nghiệm của phương trình f0 (x) = 0 luôn bé hơn số nghiệm của phương trình f(x) = 0. (II) Nếu y = f(x) là hàm số chẵn thì y = f0(x) là hàm số lẻ. (III) Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x0 có hệ số góc k = f0(x0). (IV) Nếu f0(x1) = f0(x2) và x1 6= x2 thì tiếp tuyến của đồ thị hàm số y = f(x) tại các điểm có hoành độ x1, x2 song song với nhau. Số mệnh đề đúng là?

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đạo hàm - Nguyễn Bảo Vương
Tài liệu gồm 185 trang gồm lý thuyết, công thức đạo hàm cơ bản và mở rộng, phân dạng và hướng dẫn giải các dạng toán chuyên đề đạo hàm, các bài tập có đáp án. Tập 1. Khái niệm đạo hàm và các phương pháp tính đạo hàm Khái niệm đạo hàm: Tính đạo hàm bằng định nghĩa Các quy tắc tính đạo hàm + Vấn đề 1. Tính đạo hàm bằng công thức + Vấn đề 2. Sử dụng đạo hàm để tìm giới hạn + Vấn đề 3. Đạo hàm cấp cao và vi phân Đạo hàm tổng hợp [ads] Tập 2. Phương trình tiếp tuyến + Vấn đề 1. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết tiếp điểm + Vấn đề 2. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc của tiếp tuyến + Vấn đề 3. Viết phương trình tiếp tuyến của đồ thị hàm số khi tiếp tuyến đi qua điểm cho trước Tập 3. 250 bài tập trắc nghiệm đạo hàm tự luyện Bài 1: Định nghĩa và ý nghĩa của đạo hàm Bài 2: Quy tắc tính đạo hàm Bài 3: Đạo hàm của hàm số lượng giác Bài 4: Vi phân Bài 5: Đạo hàm cấp cao
Trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp câu hỏi và bài tập trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH2017 – 2018) Phát biểu nào trong các phát biểu sau là đúng? A. Nếu hàm số y = f(x) có đạo hàm trái tại x0 thì nó liên tục tại điểm đó. B. Nếu hàm số y = f(x) có đạo hàm phải tại x0 thì nó liên tục tại điểm đó. C. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm -x0. D. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. [ads] + (THPT Chuyên Vĩnh Phúc – MĐ 903 lần 1 – năm 2017 – 2018) Cho hàm số y = x^3 + 1, gọi Δx là số gia của đối số tại x và Δy là số gia tương ứng của hàm số, tính Δy/Δx. + (THPT Thăng Long – Hà Nội – lần 1 năm 2017 – 2018) Có bao nhiêu điểm thuộc đồ thị hàm số y = (2x – 1)/(x – 1) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2018?
300 câu trắc nghiệm đạo hàm theo chủ đề có đáp án - Phạm Văn Huy
Tài liệu gồm 32 trang với các bài toán trắc nghiệm đạo hàm được phân loại thành: 1. Định nghĩa đạo hàm 2. Đạo hàm của hàm đa thức – hữu tỉ – căn thức 3. Đạo hàm của hàm số lượng giác 4. Đạo hàm cấp cao 5. Vi phân 6. Tiếp tuyến – ý nghĩa của đạo hàm [ads]