Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích hình chữ nhật

Nội dung Chuyên đề diện tích hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề diện tích hình chữ nhật Chuyên đề diện tích hình chữ nhật Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình chữ nhật. Nội dung tài liệu được tuyển chọn từ cơ bản đến nâng cao, giúp học sinh hiểu rõ về chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. Tóm tắt lý thuyết: 1. Khái niệm diện tích đa giác: Diện tích đa giác là số đo phần mặt phẳng giới hạn bởi một đa giác. Diện tích đa giác có các tính chất: hai tam giác bằng nhau có diện tích bằng nhau, chia đa giác thành các đa giác không có điểm chung thì diện tích bằng tổng diện tích các đa giác đó, và đơn vị diện tích của hình vuông tương ứng với đơn vị đo được chọn. 2. Công thức tính diện tích hình cơ bản: - Diện tích hình chữ nhật: bằng tích hai kích thước của nó. - Diện tích hình vuông: bằng bình phương cạnh. - Diện tích tam giác vuông: bằng nửa tích hai cạnh góc vuông. - Diện tích tam giác thường: bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. Bài tập và các dạng toán: A. Các dạng bài minh họa: - Tính diện tích đa giác. - Diện tích hình chữ nhật. - Diện tích hình vuông. - Diện tích tam giác vuông. - Tổng hợp các dạng trên. B. Phiếu bài tự luyện: - Diện tích hình chữ nhật. - Tính độ dài các cạnh của hình chữ nhật. - Diện tích hình vuông và tam giác vuông. - Bài tập tổng hợp. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập, hiểu rõ về diện tích hình chữ nhật và áp dụng vào các dạng bài tập phong phú.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình chữ nhật
Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông. Tính chất: + Hình chữ nhật có tất cả các tính chất của hình bình hành. + Hình chữ nhật có tất cả các tính chất của hình thang cân. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có ba góc vuông là hình chữ nhật. + Hình thang cân có một góc vuông là hình chữ nhật. + Hình bình hành có một góc vuông là hình chữ nhật. + Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật. Áp dụng vào tam giác vuông: + Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. + Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC + Dạng 1: Chứng minh tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật. + Dạng 2: Áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình chữ nhật. + Dạng 3: Vận dụng định lý thuận và định lý đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. Phương pháp giải: Sử dụng định lí về tính chất đường trung tuyến ứng với cạnh huyền cả tam giác vuông để chứng minh các hình bằng nhau hoặc chứng minh tam giác vuông. + Dạng 4: Tìm điều kiện để tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình chữ nhật. B. DẠNG BÀI NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY + Tính chất và dấu hiệu nhận biết của hình chữ nhật. + Tính chất đường trung tuyến của tam giác vuông. + Đường thẳng song song với một đường thẳng cho trước. C. PHIẾU TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh tứ giác là hình chữ nhật. + Dạng 2. Vận dụng tính chất của hình chữ nhật để chứng minh các tính chất hình học. + Dạng 3. Sử dụng định lí thuận và đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. + Dạng 4. Tìm điều kiện để tứ giác là hình chữ nhật. + Dạng 5. Tổng hợp.
Chuyên đề đối xứng tâm
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đối xứng tâm, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT + Hai điểm đối xứng qua một điểm: Hai điểm được gọi là đối xứng với nhau qua điểm o nếu o là trung điểm của đoạn thẳng nối hai điểm ấy. + Hai hình đối xứng qua một điểm: Hai hình gọi là đối xứng với nhau qua điểm O nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại. + Hình có tâm đối xứng: Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình qua điểm O cũng thuộc hình H. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN – NÂNG CAO Dạng 1. Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một điểm. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một điểm. Dạng 2. Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng (góc, tam giác) đối xứng vói nhau qua một đuờng thẳng thì bằng nhau. Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình bình hành
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình bình hành, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình bình hành là tứ giác có các cặp cạnh đối song song. Tính chất: Trong hình bình hành: + Các cạnh đối bằng nhau. + Các góc đối bằng nhau. + Hai đường chéo cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có các cạnh đối song song là hình bình hành. + Tứ giác có các cạnh đối bằng nhau là hình bình hành. + Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành. + Tứ giác có các góc đối bằng nhau là hình bình hành. + Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO + Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình bình hành. + Dạng 2. Chứng minh tứ giác là hình bình hành. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình bình hành. + Dạng 3. Chứng minh ba điểm thẳng hàng, các đường thẳng đồng quy. B. PHIẾU BÀI TỰ LUYỆN CB – NC
Chuyên đề đối xứng trục
Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đối xứng trục, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT + Hai điểm đối xứng qua một đường thẳng: Hai điểm được gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm ấy. + Hai hình đối xứng qua một đường thẳng: Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng d và ngược lại. + Hình có trục đối xứng: Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xúng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một đường thẳng. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một đường thẳng. + Dạng 2. Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng đối xứng vói nhau qua một đường thẳng thì bằng nhau. + Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO-PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO ĐỐI XỨNG TRỤC Dạng 1: Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua 1 đường thẳng. Dạng 2: Sử dụng tính chất đối xứng trục để giải toán. Dạng 3: Tìm trực đối xứng của một hình, hình có trục đối xứng. Dạng 4: Dựng hình có sử dụng đối xứng trục. Dạng 5: Tổng hợp.