Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2018 môn Toán sở GD và ĐT Quảng Bình

Đề thi thử THPT Quốc gia 2018 môn Toán sở GD và ĐT Quảng Bình mã đề 001 được biên soạn nhằm giúp các em học sinh 12 đang học tập tại các trường THPT trên địa bàn tỉnh Quảng Bình được làm quen với kỳ thi, biết được cấu trúc đề thi, thử sức và rèn luyện thường xuyên để hướng đến kỳ thi THPTQG 2018 môn Toán, đề thi gồm 4 trang với 50 câu hỏi trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành đề thi, kỳ thi được diễn ra vào chiều ngày 15/05/2018, đề thi có đáp án tất cả các mã đề 001, 002, 003, 004. Trích dẫn đề thi thử THPT Quốc gia 2018 môn Toán sở Quảng Bình : + Bạn Châu được nhận học bổng Vallet 7 triệu đồng, mẹ cho bạn gửi tiết kiệm theo thể thức lãi kép kì hạn 1 năm với lãi suất 6.8% một năm. Hỏi sau bao nhiêu năm thì bạn Châu nhận được cả vốn ban đầu và lãi gần nhất với 10 triệu đồng? (Giả thiết rằng, lãi suất không thay đổi trong suốt thời gian bạn Châu gửi). [ads] + Trong không gian Oxyz, cho vật thể được giới hạn bởi hai mặt phẳng (P), (Q) vuông góc với trục Ox lần lượt tại x = a, x = b (a < b). Một mặt phẳng tùy ý vuông góc với Ox tại điểm có hành độ x (a ≤ x ≤ b) cắt vật thể theo thiết diện có diện tích là S(x), với y = S(x) là hàm số liên tục trên [a; b]. Thể tích V của vật thể đó được tính theo công thức? + Có 8 bạn cùng ngồi xung quanh một cái bàn tròn, mỗi bạn cầm một đồng xu như nhau. Tất cả 8 ban cùng tung đồng xu của mình, bạn có đồng xu ngửa thì đúng, bạn có đồng xu sấp thì ngồi. Xác suất để không có hai bạn liền kề cùng đứng là?

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 20 đề ôn thi tốt nghiệp THPT năm 2023 môn Toán có đáp án
Tài liệu gồm 127 trang, được tổng hợp bởi thầy giáo Lê Quang Xe, tuyển tập 20 đề ôn thi tốt nghiệp THPT năm 2023 môn Toán có đáp án. MỤC LỤC : PHẦN ĐỀ BÀI 1. Đề 1: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 1. Bảng đáp án 6. Đề 2: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 7. Bảng đáp án 12. Đề 3: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 13. Bảng đáp án 17. Đề 4: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 18. Bảng đáp án 23. Đề 5: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 24. Bảng đáp án 30. Đề 6: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 31. Bảng đáp án 36. Đề 7: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 37. Bảng đáp án 42. Đề 8: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 43. Bảng đáp án 48. Đề 9: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 49. Bảng đáp án 54. Đề 10: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 55. Bảng đáp án 59. Đề 11: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 60. Bảng đáp án 65. Đề 12: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 67. Bảng đáp án 72. Đề 13: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 73. Bảng đáp án 78. Đề 14: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 79. Bảng đáp án 85. Đề 15: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 86. Bảng đáp án 92. Đề 16: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 93. Bảng đáp án 98. Đề 17: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 99. Bảng đáp án 105. Đề 18: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 106. Bảng đáp án 111. Đề 19: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 113. Bảng đáp án 119. Đề 20: ÔN LUYỆN – Trường THPT Nguyễn Tất Thành – Gia Lai 120. Bảng đáp án 126.
40 đề ôn thi tốt nghiệp THPT năm 2023 môn Toán có đáp án
Tài liệu gồm 253 trang, tuyển tập 40 đề ôn thi tốt nghiệp THPT năm 2023 môn Toán có đáp án, các đề thi được biên soạn bám sát ma trận đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn 40 đề ôn thi tốt nghiệp THPT năm 2023 môn Toán có đáp án : + Trong không gian Oxyz, cho tứ diện ABCD có tọa độ các điểm A(1;1;1), B(2;0;2), C(−1;−1;0), D(0;3;4). Trên các cạnh AB, AC, AD lần lượt lấy các điểm B′, C′, D′ sao cho AB AB′ + AC AC′ + AD AD′ = 4 và tứ diện AB′C′D′ có thể tích nhỏ nhất. Phương trình mặt phẳng B′C′D′ là? + Cho khối nón tròn xoay có đường cao h = 20cm, bán kính đáy r = 25cm. Mặt phẳng (P) đi qua đỉnh của khối nón và cách tâm O của đáy là 12cm. Khi đó diện tích thiết diện cắt bởi (P) với khối nón bằng? + Xét các số phức z thỏa mãn (z¯ − 2i)(z + 2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng?
Đề ôn thi TN THPT 2023 môn Toán trường THPT Nguyễn Bỉnh Khiêm - Gia Lai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 tài liệu tuyển tập 05 đề ôn thi tốt nghiệp THPT năm 2023 môn Toán trường THPT Nguyễn Bỉnh Khiêm, tỉnh Gia Lai; các đề được biên soạn dựa theo ma trận đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn Đề ôn thi TN THPT 2023 môn Toán trường THPT Nguyễn Bỉnh Khiêm – Gia Lai : + Cho lăng trụ tam giác ABC A B C có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A trên mặt phẳng ABC trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa AA và BC bằng 3 4 a. Khi đó thể tích khối lăng trụ đã cho bằng? + Gọi S là tập hợp tất cả các số thực a sao cho phương trình 2 z a z a 2 2 3 0 có hai nghiệm phức 1 z 2 z và các điểm biểu diễn của 1 z 2 z cùng với gốc tọa độ O tạo thành một tam giác đều. Tổng các phần tử của S bằng? + Cho hình nón N có đỉnh S chiều cao h = 3. Mặt phẳng P qua đỉnh S cắt hình nón N theo thiết diện là tam giác đều. Khoảng cách từ tâm đáy hình nón đến mặt phẳng P bằng 6. Thể tích khối nón giới hạn bởi hình nón N bằng?
Bộ đề cơ bản ôn thi THPT Quốc gia môn Toán có đáp án và lời giải
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 tài liệu bộ đề cơ bản ôn thi THPT Quốc gia môn Toán có đáp án và lời giải chi tiết. Trích dẫn Bộ đề cơ bản ôn thi THPT Quốc gia môn Toán có đáp án và lời giải : + Cho số phức z thỏa mãn z i z 1 2. Trong mặt phẳng phức, quỹ tích điểm biểu diễn các số phức z A. là đường thẳng 3 1 0 x y. B. là đường thẳng 3 1 0 x y. C. là đường thẳng 3 1 0 x y. D. là đường thẳng 3 1 0 x y. + Cắt khối nón N bởi mặt phẳng đi qua đỉnh và tạo với mặt phẳng chứa đáy một góc bằng 0 60 ta được thiết diện là một tam giác vuông cân cạnh huyền 2a. Thể tích khối nón N bằng? + Cho hình nón có chiều cao bằng 2 5. Một mặt phẳng đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng 9 3. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng?