Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Đan Phượng Hà Nội

Nội dung Đề thi HSG lớp 10 môn Toán năm 2020 2021 trường THPT Đan Phượng Hà Nội Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội Đề thi HSG Toán lớp 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội là một bộ đề gồm 4 bài toán dạng tự luận, được thiết kế để kiểm tra năng lực và kiến thức của học sinh lớp 10 trong môn Toán. Học sinh sẽ có 120 phút để hoàn thành bài thi trên 1 trang giấy. Trích dẫn một số câu hỏi từ đề thi: Cho a, b, c là các số thực thỏa mãn: a + b = 8, b + c = 8, c + a = 8. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2. Viết phương trình của đường thẳng đi qua điểm B(4;5) và tạo với đường thẳng 7x + 8y = 0 một góc 45 độ. Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng tứ giác HKMN là hình bình hành. Đề thi này không chỉ đánh giá năng lực toán học của học sinh mà còn đặt ra những bài toán thú vị, phù hợp với đối tượng học sinh lớp 10. Hy vọng rằng các em sẽ đạt kết quả tốt trong kì thi này.

Nguồn: sytu.vn

Đọc Sách

Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.