Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và bài tập số phức có lời giải chi tiết - Nguyễn Bảo Vương

Tài liệu gồm 128 trang tóm tắt lý thuyết, phân dạng toán và tuyển tập các bài toán trắc nghiệm, tự luận về chuyên đề số phức trong chương trình Giải tích 12 chương 3, các bài toán đều có đáp án và lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. Các dạng toán về số phức: + Dạng 1. Các phép tính về số phức và các bài toán định tính + Dạng 2. Biểu diễn hình học của số phức và ứng dụng + Dạng 3. Căn bậc hai của số phức và phương trình bậc hai + Dạng 4. Phương trình quy về bậc hai + Dạng 5. Dạng lượng giác của số phức + Dạng 6. Cực trị của số phức [ads] Các dạng bài tập: + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm ứng dụng của tích phân có đáp án và lời giải
Tài liệu gồm 229 trang tuyển chọn và phân dạng các bài tập trắc nghiệm có đáp án và lời giải chi tiết các chủ đề: ứng dụng của tích phân để tính diện tích, ứng dụng của tích phân để tính thể tích, ứng dụng của tích phân để giải quyết các bài toán thực tế và bài toán liên môn; giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm ứng dụng của tích phân có đáp án và lời giải: Vấn đề 1 . Ứng dụng của tích phân để tính diện tích. + Dạng toán 1: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a < b). + Dạng toán 2: Diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a, x = b. + Dạng toán 3: Diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x). + Dạng toán 4: Tính diện tích hình phẳng giới hạn bởi nhiều đường cong (nhiều hơn hai đường cong). + Dạng toán 5: Diện tích hình phẳng giới hạn bởi các đường x = g(y), x = h(y), y = c, y = d. + Dạng toán 6: Ứng dụng diện tích có đồ thị hàm đạo hàm. + Dạng toán 7: Bài toán thực tế sử dụng diện tích hình phẳng. [ads] Vấn đề 2 . Ứng dụng của tích phân để tính thể tích. + Dạng toán 1: Tính thể tích vật thể tròn xoay sinh bởi miền (D) giới hạn bởi y = f(x), y = 0 và x = a, x = b khi quay quanh trục Ox. + Dạng toán 2: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: y = f(x) và y = g(x) quay quanh trục Ox. + Dạng toán 3: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: x = g(y), x = h(y) quay xung quanh trục Oy. + Dạng toán 4: Thể tích tính theo mặt cắt S(x). + Dạng toán 5: Bài toán thực tế và ứng dụng thể tích. Vấn đề 3 . Ứng dụng của tích phân để giải quyết các bài toán thực tế và bài toán liên môn.
Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải
Bài toán tích phân hàm ẩn là dạng toán khó, vận dụng cao (VDC) về tích phân thường gặp trong các đề thi trắc nghiệm môn Toán hiện nay. Tài liệu gồm 124 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải: Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Áp dụng định nghĩa và tính chất của nguyên hàm (Trang 1). + Dạng toán 2. Áp dụng định nghĩa, tính chất, giải hệ tích phân (Trang 3). + Dạng toán 3. Phương pháp đổi biến số (Trang 51). + Dạng toán 4: Phương pháp tích phân từng phần (Trang 102). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Áp dụng định nghĩa và tính chất của nguyên hàm (Trang 14). + Dạng toán 2. Áp dụng định nghĩa, tính chất, giải hệ tích phân (Trang 24). + Dạng toán 3. Phương pháp đổi biến số (Trang 63). + Dạng toán 4: Phương pháp tích phân từng phần (Trang 107). [ads] Trích dẫn tài liệu bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải: + Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1;4], đồng biến trên đoạn [1;4] và thỏa mãn đẳng thức x + 2xf(x) = [f'(x)]^2 với mọi x thuộc [1;4]. Biết rằng f(1) = 3/2, tính tích phân I của hàm f(x) khi x chạy từ 1 đến 4. + Cho hàm số f(x) liên tục, không âm trên đoạn [0;pi/2] thỏa mãn f(0) = √3 và f(x).f'(x) = cosx.√(1 + f(x)^2) với mọi x thuộc [0;pi/2]. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [pi/6;pi/2]. + Cho hàm số f(x) liên tục trên R và f(x) khác 0 với mọi x thuộc R. f'(x) = (2x + 1).f(x)^2 và f(1) = -0,5. Biết rằng tổng f(1) + f(2) + f(3) + … + f(2017) = a/b (a thuộc Z, b thuộc N) với a/b tối giản. Mệnh đề nào dưới đây đúng?
Bài tập trắc nghiệm tích phân có đáp án và lời giải
Tài liệu gồm 163 trang tuyển chọn và phân dạng các bài tập trắc nghiệm tích phân có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm tích phân có đáp án và lời giải: Vấn đề 1 . Tích phân. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 1). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 9). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 14). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 15). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 18). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tính tích phân bằng cách áp dụng định nghĩa, tính chất và bảng nguyên hàm (Trang 20). + Dạng toán 2. Tích phân hàm phân thức hữu tỉ (Trang 35). + Dạng toán 3. Tích phân hàm chứa dấu căn thức (Trang 48). + Dạng toán 4. Tích phân hàm số lượng giác (Trang 50). + Dạng toán 5. Tích phân hàm số mũ và hàm số logarit (Trang 58). Vấn đề 2 . Tích phân đổi biến số. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 62). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 76). [ads] Phần 2 . Lời giải chi tiết. + Dạng toán 1. Phương pháp tích phân đổi biến số dạng 1: hàm đa thức, hàm hữu tỉ, hàm vô tỉ, hàm lượng giác, hàm số mũ, hàm số logarit (Trang 79). + Dạng toán 2. Phương pháp tích phân đổi biến số dạng 2: dạng √(a^2 – x^2), dạng √(x^2 – a^2), dạng √(x^2 + a^2), dạng √((a + x)/(a – x)), dạng √((a – x)/(a + x)) (Trang 123). Vấn đề 3 . Tích phân từng phần. Phần 1 . Câu hỏi và bài toán trắc nghiệm. + Dạng toán 1. Tích phân P(x).e^x (Trang 131). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 133). + Dạng toán 3. Tích phân P(x).lnx (Trang 134). Phần 2 . Lời giải chi tiết. + Dạng toán 1. Tích phân P(x).e^x (Trang 138). + Dạng toán 2. Tích phân P(x).sinx hoặc P(x).cosx (Trang 148). + Dạng toán 3. Tích phân P(x).lnx (Trang 151).
Bài tập trắc nghiệm nguyên hàm có đáp án và lời giải
Tài liệu gồm 124 trang tuyển chọn và phân dạng các bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm nguyên hàm có đáp án và lời giải: Vấn đề 1 . Nguyên hàm cơ bản. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Sử dụng lý thuyết (Trang 2). + Dạng toán 2. Áp dụng trực tiếp bảng nguyên hàm (Trang 3). + Dạng toán 3. Nguyên hàm các hàm số phân thức hữu tỉ (Trang 27). + Dạng toán 4. Nguyên hàm hàm số chứa dấu căn thức (Trang 30). + Dạng toán 5. Nguyên hàm hàm số lượng giác (Trang 31). + Dạng toán 6. Nguyên hàm hàm số mũ và hàm số logarit (Trang 34). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Sử dụng lý thuyết (Trang 9). + Dạng toán 2. Áp dụng trực tiếp bảng nguyên hàm (Trang 12). + Dạng toán 3. Nguyên hàm các hàm số phân thức hữu tỉ (Trang 39). + Dạng toán 4. Nguyên hàm hàm số chứa dấu căn thức (Trang 46). + Dạng toán 5. Nguyên hàm hàm số lượng giác (Trang 49). + Dạng toán 6. Nguyên hàm hàm số mũ và hàm số logarit (Trang 59). Vấn đề 2 . Tìm nguyên hàm bằng phương pháp đổi biến số. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Phương pháp tính nguyên hàm bằng cách đưa vào vi phân (Trang 67). + Dạng toán 2. Phương pháp tính nguyên hàm bằng cách đổi biến số: hàm đa thức, hàm phân thức hữu tỉ, hàm chứa dấu căn thức, hàm số lượng giác, hàm số mũ, hàm số logarit (Trang 70). [ads] Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Phương pháp tính nguyên hàm bằng cách đưa vào vi phân (Trang 78). + Dạng toán 2. Phương pháp tính nguyên hàm bằng cách đổi biến số: hàm đa thức, hàm phân thức hữu tỉ, hàm chứa dấu căn thức, hàm số lượng giác, hàm số mũ, hàm số logarit (Trang 85). Vấn đề 3 . Phương pháp nguyên hàm từng phần. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Nguyên hàm P(x).[sinx / cosx] trong đó P(x) là đa thức ẩn x (Trang 105). + Dạng toán 2. Nguyên hàm P(x).e^(ax + b) trong đó P(x) là đa thức ẩn x (Trang 107). + Dạng toán 3. Nguyên hàm P(x).ln(mx + n) trong đó P(x) là đa thức ẩn x (Trang 107). + Dạng toán 4. Nguyên hàm [sinx / cosx].e^x (Trang 109). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Nguyên hàm P(x).[sinx / cosx] trong đó P(x) là đa thức ẩn x (Trang 110). + Dạng toán 2. Nguyên hàm P(x).e^(ax + b) trong đó P(x) là đa thức ẩn x (Trang 113). + Dạng toán 3. Nguyên hàm P(x).ln(mx + n) trong đó P(x) là đa thức ẩn x (Trang 116). + Dạng toán 4. Nguyên hàm [sinx / cosx].e^x (Trang 123).