Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10

Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bất đẳng thức
Tài liệu gồm 28 trang trình bày các phương pháp chứng minh bất đẳng thức và ứng dụng của bất đẳng thức
Tài liệu ôn thi tuyển sinh vào lớp 10 môn Toán - Trần Quốc Nghĩa
Tài liệu gồm 160 trang với nội dung gồm các phần: Phần 1. BÀI TẬP THEO CHUYÊN ĐỀ + Vấn đề 1. CĂN THỨC + Vấn đề 2. HÀM SỐ VÀ ĐỒ THỊ I. Hàm số bậc nhất II. Hàm số bậc hai III. Sự tương giao giữa parabol (P) và đường thẳng (d) + Vấn đề 3. PHƯƠNG TRÌNH I. Phương trình bậc nhất II. Phương trình bậc hai III. Phương trình trùng phương IV. Phương trình chứa căn thức và trị tuyệt đối V. Phương trình chứa tham số VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao [ads] + Vấn đề 4. HỆ PHƯƠNG TRÌNH I. Giải hệ phương trình II. Hệ phương trình chứa tham số + Vấn đề 5. BẤT PHƯƠNG TRÌNH + Vấn đề 6. GIẢI TOÁN BẰNG CÁCH LẬP PT – HPT + Vấn đề 7. HÌNH HỌC I. Hệ thức lượng trong tam giác II. Đường tròn III. Hình trụ – Hình nón – Hình cầu + Vấn đề 8. BÀI TẬP TỔNG HỢP Phần 2. ĐỀ THI BÌNH DƯƠNG Phần 3. ĐỀ THI TPHCM Phần 4. ĐỀ THI CÁC TỈNH NĂM 2015 – 2016
Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào lớp 10
Tài liệu gồm 9 trang, trình bày lời giải chi tiết các bài toán bất đẳng thức (BĐT) thường gặp trong đề thi tuyển sinh vào lớp 10.
Tài liệu ôn thi vào lớp 10 môn Toán - Vũ Văn Bắc
Tài liệu gồm 42 trang, trình bày các vấn đề sau: + Vấn đề 1. Rút gọn biểu thức có chứa căn + Vấn đề 2. Phương trình bậc hai một ẩn + Vấn đề 3. Hệ phương trình đại số [ads] + Vấn đề 4. Các bài toán về đồ thị hàm số + Vấn đề 5. Giải toán bằng cách lập phương trình + Vấn đề 6. Các bài toán hình học tổng hợp + Vấn đề 7. Một số đề toán luyện thi