Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 11 năm 2022 - 2023 sở GDĐT Quảng Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2022 – 2023 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm bài thi thứ nhất và bài thi thứ hai; kỳ thi được diễn ra vào ngày 04 tháng 04 năm 2023. Trích dẫn Đề thi chọn HSG Toán 11 năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho H là một đa giác đều có 252 đường chéo. Chọn ngẫu nhiên một tam giác có ba đỉnh là ba đỉnh của H. Tính xác suất để tam giác được chọn là một tam giác vuông không cân. Có bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau đồng thời tổng lập phương của ba chữ số đó chia hết cho 3. + Cho hình chóp S ABC và điểm M di động trên cạnh AB (M khác A B). Mặt phẳng luôn đi qua M đồng thời song song với cả hai đường thẳng SA và BC. a. Xác định thiết diện khi cắt hình chóp S ABC bởi mặt phẳng. Tìm vị trí của điểm M để thiết diện có diện tích lớn nhất. b. Điểm N nằm trên cạnh BC thỏa mãn 23 5 BA BC BM BN. Chứng minh rằng: mặt phẳng SMN luôn chứa một đường thẳng cố định khi M di động. c. Chứng minh rằng: 2 2 2 SA BC SC AB SB AC. + Cho tập hợp A n 1 3 5 … 2 1 (với n). Tìm số nguyên dương n nhỏ nhất sao cho tồn tại 12 tập con 1 2 12 B B B … của A thỏa mãn đồng thời các điều kiện sau?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Đông Hà - Quảng Trị
Đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2021. Trích dẫn đề thi học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị : + Một trường có 50 học sinh giỏi, trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham gia trại hè. Tính xác suất để 3 em được chọn không có cặp anh em sinh đôi. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD a SA ABCD và SA a, M là trung điểm của CD. a) Tính góc giữa SM và SAB. b) Tính theo a khoảng cách từ A đến SBM. + Cho M N P lần lượt là trung điểm của ba cạnh BC CA AB của ABC. Gọi H G O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp ABC, I là tâm đường tròn ngoại tiếp MNP. Chứng minh H G O I thẳng hàng.
Đề thi HSG Toán 11 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu triệu đồng (kết quả làm tròn đến hai chữ số phần thập phân). + Cho đa giác đều 18 cạnh. Nối tất cả các đỉnh với nhau. Chọn hai tam giác trong số các tam giác vuông tạo thành từ 3 đỉnh trong 18 đỉnh. Tính xác suất để chọn được hai tam giác có cùng chu vi. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt đáy, góc giữa SB và mặt đáy bằng 60. Gọi N là trung điểm của BC. a) Tính cosin của góc giữa hai đường thẳng SD và AN. b) Gọi H, K là hai điểm lần lượt thuộc các đường thẳng SB và DN sao cho HK SB HK DN. Tính độ dài đoạn HK theo a.
Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2020 - 2021 sở GDĐT Cà Mau
Chủ Nhật ngày 18 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút.