Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 9 môn Toán năm 2023 2024 trường THCS Kim Giang Hà Nội

Nội dung Đề kiểm tra lớp 9 môn Toán năm 2023 2024 trường THCS Kim Giang Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra lớp 9 môn Toán năm học 2023 - 2024 trường THCS Kim Giang Hà Nội Đề kiểm tra lớp 9 môn Toán năm học 2023 - 2024 trường THCS Kim Giang Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra môn Toán lớp 9 năm học 2023 - 2024 tại trường THCS Kim Giang, Hà Nội. Kỳ thi sẽ diễn ra vào ngày 22 tháng 09 năm 2023. Nội dung của đề kiểm tra Toán lớp 9 năm 2023 - 2024 trường THCS Kim Giang - Hà Nội bao gồm các câu hỏi sau: 1) Cho hai biểu thức. a) Tính giá trị của A khi x = 9. b) Rút gọn biểu thức B. c) Biết P = A.B. Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị âm. 2) Giải bài toán: Một tổ sản xuất dự định làm một số sản phẩm trong 20 ngày với năng suất định trước. Do tăng năng suất thêm 5 sản phẩm mỗi ngày, tổ đó đã hoàn thành kế hoạch sớm hơn thời hạn dự định 1 ngày và còn vượt mức kế hoạch 60 sản phẩm. Hỏi tổ đó đã sản xuất được bao nhiêu sản phẩm? 3) Cho tam giác ABC và đường cao AH. Gọi I, K lần lượt là hình chiếu của H trên AB, AC. Chứng minh: a) AH2 = AI.AB và AI.AB = AK.AC. b) Các tam giác ABC và AKI đồng dạng. c) Kẻ thêm các đường cao BD và CE của tam giác ABC. Chứng minh ED // IK và rằng SDEH = (1 - cos2A - cos2B - cos2C).SABC. Chúc các em học sinh lớp 9 trường THCS Kim Giang, Hà Nội đạt kết quả tốt trong kỳ thi của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.