Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 sở GDĐT Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào sáng thứ Tư ngày 26 tháng 04 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = (a − 1)x + b − 2 (a và b là tham số). Biết đường thẳng d song song với đường thẳng d’: y = 3x + 8 và đi qua điểm A(2;3). Tính T = a2 + 2b2. + Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (với m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện: (x12 – 2mx1 + 2m − 1)(x22 – 2mx2 + 2m − 1) < 0. + Cho tam giác ABC không có góc tù (AB < AC) và nội tiếp đường tròn (O) (B và C cố định và A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. 1. Chứng minh MBOC là tứ giác nội tiếp. 2. Chứng minh FI.FM = FD.FE. 3. Tìm vị trí của đỉnh A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Trần Mai Ninh Thanh Hóa
Nội dung Đề KSCL giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 90 phút, và đề thi đi kèm với lời giải chi tiết. Trích dẫn đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa: Cho biểu thức B. Câu a yêu cầu tìm điều kiện của b để B là biểu thức xác định và rút gọn B. Câu b yêu cầu tìm giá trị của b để B lớn hơn -1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Câu a yêu cầu tính độ dài của đoạn AH khi AB = 6cm, AC = 8cm. Câu b yêu cầu chứng minh một phương trình liên quan đến các đỉnh và đoạn trong tam giác. Câu c yêu cầu chứng minh một mệnh đề kí hiệu về các đoạn trong tam giác. Rút gọn các biểu thức A và B. Đề thi mang tính thách thức và khuyến khích học sinh rèn luyện kỹ năng giải toán, tư duy logic và phân tích. Hy vọng các em sẽ có kết quả tốt trong kì thi này.