Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 1 Toán 10 năm 2019 - 2020 trường THPT Thủ Đức - TP HCM

Đề kiểm tra học kì 1 Toán 10 năm 2019 – 2020 trường THPT Thủ Đức – TP HCM gồm 02 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề kiểm tra học kì 1 Toán 10 năm 2019 – 2020 trường THPT Thủ Đức – TP HCM : + Gia đình bạn Huy gồm 5 người, trong tháng 10 năm 2019 đã sừ dụng hết 37m3 nước máy. Biết rằng định mức tiêu thụ nước mỗi người là 4m3 / người / tháng và đơn giá được tính theo bảng sau. Hỏi trong tháng 10 năm 2019, số tiền sử dụng nước máy mà gia đình bạn Huy phải trả là bao nhiêu? + Giải các phương trình và hệ phương trình sau. + Trong các phòng ở khách sạn, bên cạnh bộ khóa cửa chính còn có một phụ kiện hữu ích khác chính là door guard (chốt trượt mở an toàn) (tham khảo hình bên dưới). Thiết bị này phòng trường hợp khi nghe tiếng gõ cửa mà không biết chính xác được là ai. Door guard là một dạng chốt nổi, tạo một khoảng cỡ 11,8cm đủ để người bên trong nhận diện người bên ngoài và nói chuyện với nhau. Biết chiều rộng cánh cửa vào khoảng 84,5cm, hãy tính góc BAC (góc mở cánh cửa).

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tân Phong - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Cho ∆ABC có trung tuyến CM. Trên đường thẳng AC lấy điểm N sao cho NA = 2NC. Gọi K là trung điểm MN. Phân tích vecto AK theo AB, AC. + Trong mặt phẳng Oxy cho E(-2;-3); F(3;7); G(0;3); H(-4;-5), chứng minh rằng hai đường thẳng EF và GH song song với nhau. + Trong mặt phẳng Oxy, cho tam giác ∆ABC có A(−1;2); B(3;7); C(0;3). Tìm D sao cho ABCD là hình bình hành.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lương Thế Vinh - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Một người ném một quả bóng với quỹ đạo là một phần đường Parabol (P): y = ax2 + bx + c (a khác 0). Chọn hệ trục tọa độ Oxy sao cho gốc tọa độ O tại vị trí chân người ném bóng, trục Ox nằm trên mặt đất (x, y được tính bằng mét) (xem hình bên). Quả bóng được ném lên từ độ cao 2,5 mét so với mặt đất, Parabol có đỉnh I(2;9/2). Hỏi vị trí bóng chạm mặt đất cách chân người đó bao nhiêu mét? + Cho tam giác ABC có AB = 5; AC = 8, góc A = 60 độ. a) Tính độ dài cạnh BC, trung tuyến AM. b) Trên cạnh BC lấy điểm N sao cho BN = 3, tính độ dài đoạn thẳng AN. + Giải các phương trình và hệ phương trình sau.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Xác định a, b, c để parabol (P): y = ax2 + bx + c đi qua ba điểm A(1;4), B(-1;20) và C(2;2). + Cho tam giác ABC có AB = 10; AC = 6; góc BAC = 60 độ. Tính độ dài cạnh BC và độ dài đường cao AH của tam giác ABC. + Cho 2 =< x =< 5. Tìm GTNN của hàm số f(x) = (2 – x)√(5 – x).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Marie Curie - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;0), B(4;5) và C(8;-1). Chứng minh rằng tam giác ABC cân. Tìm tọa độ chân đường cao H kẻ từ đỉnh A của tam giác ABC. + Tìm tất cả các giá trị của tham số m để phương trình √(2x^2 – x + m) = x – 2 có nghiệm. + Cho hàm số y = -2×2 + 4x + 6 có đồ thị là parabol (P). a) Tìm tọa độ đỉnh I và phương trình trục đối xứng của parabol (P). b) Tìm tọa độ giao điểm của đồ thị (P) và trục hoành. Tính khoảng cách giữa hai giao điểm đó.