Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thang

Nội dung Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thang Bản PDF - Nội dung bài viết Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thangPhần A - HÌNH VUÔNGPhần B - HÌNH CHỮ NHẬTPhần C - HÌNH THANG Tài liệu dạy thêm học thêm chuyên đề hình vuông, hình chữ nhật, hình thang Tài liệu này được tổng hợp trong 17 trang, bao gồm tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề về hình vuông, hình chữ nhật, hình thang. Nó được thiết kế để hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy và học thêm môn Toán. Phần A - HÌNH VUÔNG Phần I - Tóm tắt lý thuyết: Dạng 1: Nhận biết hình vuông - Dựa vào định nghĩa hình vuông, nhận biết được hình nào là hình vuông. Dạng 2: Vẽ hình vuông - Vẽ hình vuông dựa vào định nghĩa. Dạng 3: Diện tích hình vuông - Từ công thức tính diện tích hình vuông, tính diện tích hình vuông khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình vuông. Dạng 4: Bài toán liên quan đến hình vuông. Phần B - HÌNH CHỮ NHẬT Phần I - Tóm tắt lý thuyết: Dạng 1: Nhận biết hình chữ nhật - Dựa vào định nghĩa hình chữ nhật, nhận biết được hình nào là hình chữ nhật. Dạng 2: Vẽ hình chữ nhật - Vẽ hình chữ nhật trên giấy kẻ ô vuông với các số đo cho trước. Dạng 3: Diện tích hình chữ nhật - Từ công thức tính diện tích hình chữ nhật, tính diện tích hình chữ nhật khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình chữ nhật. Dạng 4: Bài toán liên quan đến hình chữ nhật. Phần C - HÌNH THANG Phần I - Tóm tắt lý thuyết: Dạng 1: Nhận biết hình thang - Dựa vào định nghĩa hình thang, nhận biết được hình nào là hình thang. Dạng 2: Vẽ hình thang - Vẽ hình thang trên giấy kẻ ô vuông với các số đo cho trước. Dạng 3: Diện tích hình thang - Từ công thức tính diện tích hình thang, tính diện tích hình thang khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình thang. Dạng 4: Bài toán liên quan đến hình thang - Từ công thức tính diện tích và chu vi hình thang, tính diện tích hình thang khi biết các yếu tố hoặc tìm yếu tố nào đó khi biết diện tích hình thang. File WORD (dành cho quý thầy, cô): [link]

Nguồn: sytu.vn

Đọc Sách

Chuyên đề bội và ước của một số nguyên
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Nhận biết được quan hệ chia hết, khái niệm ước và bội trong tập hợp các số nguyên. Kĩ năng: + Xác định được bội và ước của các số nguyên cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm bội (ước) của một số nguyên. Bội của một số nguyên a có dạng a m m. Ước của một số nguyên: + Nếu số nguyên có giá trị tuyệt đối nhỏ thì nhẩm xem nó chia hết cho những số nào rồi từ đó tìm các ước cả ước dương và ước âm. + Nếu số nguyên có giá trị tuyệt đối lớn thì phân tích số đó ra thừa số nguyên tố để tìm ước. Dạng 2 . Tìm x thỏa mãn đẳng thức. Dạng 3 . Tìm x thỏa mãn điều kiện chia hết.
Chuyên đề nhân hai số nguyên, tính chất của phép nhân
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nhân hai số nguyên, tính chất của phép nhân, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu được quy tắc nhân hai số nguyên. Kĩ năng: + Thực hiện được phép nhân hai số nguyên. + Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng trong tính toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Thực hiện phép tính. Quy tắc nhân hai số nguyên khác dấu: Số âm × Số dương = Số âm. + Muốn nhân hai số nguyên khác dấu, ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu “-” trước kết quả. + Với mọi số nguyên a: a.0 = 0.a = 0. Quy tắc nhân hai số nguyên cùng dấu: + Nhân hai số nguyên dương: Thực hiện như phép nhân thông thường. + Nhân hai số nguyên âm: Muốn nhân hai số nguyên âm, ta nhân hai giá trị tuyệt đối của chúng. Dạng 2 . Vận dụng tính chất của phép nhân. + Tính chất giao hoán. + Tính chất kết hợp. + Nhân với số 1. + Tính chất phân phối của phép nhân đối với phép cộng, phép trừ.
Chuyên đề phép trừ hai số nguyên
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép trừ hai số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu quy tắc trừ hai số nguyên. Kĩ năng: + Thực hiện được phép trừ hai số nguyên. + Vận dụng được quy tắc dấu ngoặc và quy tắc chuyển vế trong tính toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Thực hiện phép trừ hai số nguyên. Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b. Dạng 2 . Vận dụng quy tắc dấu ngoặc. Khi bỏ dấu ngoặc có dấu “-” đằng trước, ta phải đổi dấu tất cả các số hạng trong dấu ngoặc: + Dấu “+” chuyển thành dấu “-“. + Dấu “-” chuyển thành dấu “+”. Tổng quát: A B D A B D. Khi bỏ dấu ngoặc có dấu “+” đằng trước thì dấu của các số hạng trong dấu ngoặc vẫn giữ nguyên. Tổng quát: A B D A B D. Dạng 3 . Vận dụng quy tắc chuyển vế. Khi biến đổi các đẳng thức ta thường áp dụng: + Nếu a b thì a c b c. + Nếu a c b c thì a b. + Nếu a b thì b a. Quy tắc: Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.
Chuyên đề phép cộng hai số nguyên
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép cộng hai số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Hiểu quy tắc cộng hai số nguyên. Kĩ năng: + Thực hiện được phép cộng hai số nguyên. + Vận dụng được các tính chất giao hoán, kết hợp, cộng với số 0, cộng với số đối trong tính toán (tính viết, tính nhẩm và tính nhanh một cách hợp lí). I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện phép cộng số nguyên. Cộng hai số nguyên cùng dấu: + Với a và b nguyên dương a b a b. + Với a và b nguyên âm a b a b. Cộng hai số nguyên khác dấu: + Với hai số đối nhau a và -a: a a 0. + Muốn cộng hai số nguyên khác dấu không đối nhau, ta tìm hiệu giá trị tuyệt đối của chúng rồi đặt trước kết quả tìm được dấu của số có giá trị tuyệt đối lớn hơn. Dạng 2 : Áp dụng tính chất của phép cộng số nguyên để tính tổng. + Tính chất giao hoán. + Tính chất kết hợp. + Cộng với số 0. + Cộng với số đối.