Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội

Nội dung Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 7 đề thi Olympic môn Toán lớp 7 đợt 1 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Cùng tham gia để kiểm tra và nâng cao kiến thức Toán của mình nhé! Trích dẫn Đề Olympic Toán lớp 7 đợt 1 năm 2022 - 2023 phòng GD&ĐT Ứng Hòa - Hà Nội: + Ba lớp 7A, 7B, 7C đã mua một số gói tăm từ thiện. Ban đầu, số gói tăm dự định chia cho ba lớp theo tỉ lệ 5:6:7. Tuy nhiên sau đó, việc chia được thay đổi thành tỉ lệ 4:5:6, dẫn đến một lớp nhận nhiều hơn 4 gói tăm so với dự định ban đầu. Hãy tính tổng số gói tăm mà ba lớp đã mua. + Đề bài tiếp theo đề cập đến tam giác ABC với AB AC và đường phân giác AD. Điểm E trên cạnh AC sao cho AE AB. Hãy chứng minh rằng BD DE và đưa ra các bước chứng minh khác liên quan đến tam giác và giao điểm K của các đường thẳng. + Cuối cùng, Ông Nam gửi 100 triệu vào ngân hàng với lãi suất 8%/năm. Sau 36 tháng, hãy tính tổng số tiền ông Nam nhận được, bao gồm cả gốc và lãi (nếu lãi không rút ra). Phải làm thế nào để tiền lãi được tính vào vốn cho các kì hạn tiếp theo?

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2020 – 2021 phòng Giáo dục và Đào tạo thành phố Quảng Ngãi, tỉnh Quảng Ngãi.
Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề chọn học sinh năng khiếu Toán 7 năm 2020 - 2021 phòng GDĐT Sơn Dương - Tuyên Quang
Đề chọn học sinh năng khiếu Toán 7 năm 2020 – 2021 phòng GD&ĐT Sơn Dương – Tuyên Quang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Yên Định - Thanh Hóa
Đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 02 tháng 02 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa : + Tìm một số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau. + Tìm các số nguyên dương n và các số nguyên tố p sao cho n n p. + Cho ABC có góc A nhỏ hơn 900. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB, trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc với AC và AN = AC. a) Chứng minh rằng: AMC = ABN. b) Chứng minh: BN CM. c) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN.