Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Sầm Sơn Thanh Hóa

Nội dung Đề thi HSG lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Sầm Sơn Thanh Hóa Bản PDF Đề thi HSG Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa là một đề thi có độ khó cao, gồm 5 bài toán dạng tự luận. Thí sinh có thời gian làm bài trong vòng 150 phút. Đề thi bao gồm các bài toán đa dạng, có tính logic cao và yêu cầu sự tư duy sáng tạo.

Một trong các câu hỏi trong đề thi là "Số M được chia thành ba phần tỉ lệ với nhau như 0,25 : 0,375 : 0,1(3). Tìm số M biết rằng tổng các bình phương của ba phần đó bằng 4564." Câu hỏi này đòi hỏi thí sinh phải áp dụng kiến thức về tỉ lệ và phép toán để giải quyết vấn đề. Đây là một bài toán không chỉ đòi hỏi tính toán mà còn yêu cầu sự khéo léo trong việc tìm ra cách giải phù hợp.

Đề thi cũng đề cập đến việc tìm các giá trị nguyên của biểu thức N = 2^(3x-4) * 1/(2^x) để biểu thức có giá trị nguyên. Đây là một bài toán yêu cầu thí sinh áp dụng kiến thức về số mũ và cần có sự kiên nhẫn trong việc giải quyết vấn đề.

Ngoài ra, đề thi còn đưa ra một bài toán về tam giác, yêu cầu thí sinh chứng minh các quy luật và tính chất của tam giác cũng như tư duy hình học. Đây là một bài toán khó, đòi hỏi sự tỉ mỉ và chính xác trong từng bước giải.

Cuối cùng, đề thi cũng cung cấp lời giải chi tiết và hướng dẫn chấm điểm, giúp học sinh hiểu rõ hơn về cách giải và đánh giá bài làm của mình.

Tóm lại, đề thi HSG Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa là một bài kiểm tra đặc biệt thách thức học sinh và đòi hỏi sự tư duy, logic và kiên nhẫn. Đây là cơ hội để học sinh thể hiện khả năng của mình và phát triển kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề KĐCL mũi nhọn Toán 7 năm 2023 - 2024 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng mũi nhọn môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề KĐCL mũi nhọn Toán 7 năm 2023 – 2024 phòng GD&ĐT Nam Đàn – Nghệ An : + Ba lớp 7A, 7B, 7C cùng mua một số bút bi để ủng hộ cho các bạn vùng cao, lúc đầu số bút bi dự định chia cho 3 lớp 7A, 7B, 7C lần lượt tỷ lệ với 5 : 6 : 7 nhưng sau đó lại chia theo tỷ lệ 4 : 5 : 6 nên có một lớp nhận mua nhiều hơn lúc đầu 5 cái. Hãy tính tổng số bút bi mà ba lớp đã mua để ủng hộ cho các bạn vùng cao. + Tìm số tự nhiên có 2 chữ số biết rằng nhân số đó với 135 ta được một số chính phương. + Cho tam giác vuông tại A (AB > AC), vẽ phân giác CE (E thuộc AB). Trên cạnh BC lấy điểm H sao cho CH = CA. Gọi N là giao điểm của AH và CE. a) Chứng minh N là trung điểm của AH. b) Gọi D là trung điểm NH. Đường thẳng qua D vuông góc với NH tại D cắt EH tại K. Chứng minh NK song song với AB. c) Trên cạnh AH lấy các điểm I và Q sao cho AI = IQ = QH. So sánh hai góc ACI và ICQ.
Đề chọn HS năng khiếu Toán 7 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút. Trích dẫn Đề chọn HS năng khiếu Toán 7 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho tam giác ABC cân tại A (AB BC). Gọi N là trung điểm của AC, qua N kẻ đường thẳng vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm F sao cho AF BM. a) Chứng minh: MAC ABC. b) Chứng minh: AM CF. c) Lấy điểm D trên cạnh AC điểm E trên cạnh AB sao cho AD AE. + Gieo ngẫu nhiên xúc xắc (6 mặt) một lần. Gọi a b là xác xuất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia hết cho 3”. Giá trị biểu thức 2023a b là? + Cho p là số nguyên tố lớn hơn 3, biết p 2 cũng là số nguyên tố. Chứng minh rằng: p + 7 là bội của 6.
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Lệ Thủy - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lệ Thủy, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Lệ Thủy – Quảng Bình : + Ba đội máy cày trên ba cánh đồng có diện tích như nhau. Đội I hoàn thành công việc trong 6 ngày, đội II hoàn thành công việc trong 5 ngày, đội III hoàn thành công việc trong 3 ngày. Biết rằng đội I ít hơn đội II đúng 1 máy cày. Hỏi mỗi đội có bao nhiêu máy cày? + Cho ∆ABC vuông tại A có AB < AC. Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. a) Chứng minh AH // DE. b) Trên tia DE lấy điểm I sao cho DI = AH. Gọi O là trung điểm của đoạn thẳng DH. Chứng tỏ rằng ba điểm A, O, I thẳng hàng. + Trong giờ học Toán, giáo viên đã yêu cầu học sinh tìm một số có 3 chữ số. Biết rằng nếu tăng chữ số đầu tiên lên n đơn vị và giảm chữ số thứ hai và thứ 3 đi n đơn vị thì ta được số mới gấp n lần số cần tìm. Em hãy giúp các bạn học sinh trả lời yêu cầu của giáo viên. + Gọi S là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập thành từ các chữ số 3; 4; 5; 7; 8; 9. Tính xác suất để số được lấy ra từ tập S là số chẵn?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lâm Thao - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lâm Thao, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 30% trắc nghiệm (12 câu – 06 điểm) + 70% tự luận (04 câu – 14 điểm), thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lâm Thao – Phú Thọ : + Biết đa thức f x chia cho x + 3 thì dư 10, chia cho x − 2 thì dư 5, chia cho x 3 2 được thương là 2x và còn dư. Tìm đa thức f x và sắp xếp đa thức f x theo lũy thừa giảm dần của biến. + Cho ∆ABC vuông tại A (AB AC). Gọi M là trung điểm của cạnh BC, lấy điểm D thuộc tia đối của tia MA sao cho MD MA. Kẻ BI vuông góc với AD tại I CK vuông góc với AD tại K. a) Chứng minh rằng BI CK. b) Kẻ AH vuông góc với BC tại H MN vuông góc với BD tại N. Chứng minh rằng các đường thẳng CK AH MN đồng quy. c) Chứng minh rằng N là trung điểm của BD. d) Chứng minh rằng BC AB AC AH. + Chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 50.