Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức đóng vai trò quan trọng trong quá trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em thể hiện kiến thức, năng lực và xác định hướng đi tiếp theo trong sự nghiệp học tập của mình. Trong số các môn thi được chú trọng, môn Toán luôn được coi là bài kiểm tra khó khăn và quyết định sự đậu rớt của nhiều học sinh. Đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Lâm Đồng đã được tổ chức vào ngày .../06/2019. Trong đó, có một số câu hỏi rất thú vị và đòi hỏi sự tư duy logic, khả năng phán đoán và tính toán chính xác từ các thí sinh. Ví dụ, một câu hỏi đề cập đến việc tính số học sinh trong lớp 9A dựa trên thông tin về việc trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ. Câu hỏi khác liên quan đến định lý hình học, yêu cầu thí sinh chứng minh một tứ giác nội tiếp trong một tình huống cụ thể. Thông qua việc xem xét và giải quyết các bài tập trong đề thi Toán của kỳ tuyển sinh này, học sinh có cơ hội thực hành, rèn luyện và phát triển kỹ năng toán học của mình. Đồng thời, đề thi cũng giúp quý thầy cô, phụ huynh và những người quan tâm có cái nhìn rõ hơn về trình độ và sự chuẩn bị của học sinh trước kỳ thi quan trọng này. Hy vọng rằng, mỗi em học sinh sẽ tự tin và thành công trên con đường học tập của mình sau kỳ thi tuyển sinh vào lớp 10 THPT tại Lâm Đồng.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 3 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 3 năm học 2022 – 2023 trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 07 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 lần 3 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Trên một khúc sông, một canô đi xuôi dòng 60 km, sau đó lại chạy ngược dòng 64 km, biết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng 30 phút. Tính vận tốc riêng của canô, biết vận tốc của dòng nước là 4 km/h. + Một bồn chứa xăng trên xe có cấu tạo: hai đầu là hai nửa hình cầu có đường kính là 2,4m , phần thân là một hình trụ có chiều dài 3,4m . Tính thể tích của bồn chứa xăng. (Lấy π ≈ 3,14). + Cho tam giác 𝐴𝐴𝐴𝐴𝐴𝐴 nhọn nội tiếp (O) ( AB AC). Các đường cao AD; BE; CF cắt nhau tại 𝐻𝐻. Đường thẳng 𝐴𝐴𝐴𝐴 cắt (𝑂𝑂) tại 𝐾𝐾 (𝐾𝐾 khác 𝐴𝐴). a) Chứng minh tứ giác 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 là tứ giác nội tiếp. b) Kẻ đường kính 𝐴𝐴𝐴𝐴. Chứng minh 𝐴𝐴𝐴𝐴. 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴. 𝐴𝐴𝐴𝐴 và tứ giác 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 là hình thang cân. c) Đường tròn đường kính 𝐴𝐴𝐴𝐴 cắt (𝑂𝑂) tại 𝑀𝑀 (𝑀𝑀 khác 𝐴𝐴). Gọi 𝑃𝑃 là điểm chính giữa cung nhỏ BC ; MP cắt BC tại 𝐺𝐺. Chứng minh 𝐻𝐻𝐻𝐻 là phân giác của góc 𝐵𝐵𝐵𝐵𝐵𝐵.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Sa Pa - Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Sa Pa, tỉnh Lào Cai. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Sa Pa – Lào Cai : + Hai người làm chung một công việc thì sau 2 giờ 24 phút sẽ xong. Còn nếu hai người làm chung mà người thứ nhất làm trong 3 giờ và người thứ hai làm trong 1 giờ thì được tổng cộng được 11/12 công việc. Hỏi nếu làm riêng một mình thì mỗi người hoàn thành công việc trong bao nhiêu giờ. + Gieo con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện mặt có số chấm không vượt quá 4. Tính xác suất của A. + Cho tam giác ABC vuông ở A. Biết độ dài AB = 6cm và AC = 8cm. Tính độ dài đường cao AH của tam giác và tính độ dài của bán kính đường tròn ngoại tiếp tam giác ABC.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THPT Chu Văn An - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 trường THPT Chu Văn An, tỉnh Thái Nguyên; đề thi gồm 01 trang với 10 câu tự luận, thời gian làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THPT Chu Văn An – Thái Nguyên : + Để phục vụ công tác phòng chống dịch COVID-19, ngoài việc thực hiện thông điệp 5K thì giáo viên chủ nhiệm còn tổ chức cho các bạn học sinh lớp 9A cùng làm các tấm chắn bảo hộ để tặng các chốt phòng chống dịch. Lớp 9A có tất cả 45 bạn, trong đó, mỗi bạn nam làm được 2 tấm chắn bảo hộ; mỗi bạn làm được 3 tấm chắn bảo hộ; riêng giáo viên chủ nhiệm làm được 5 tấm chắn bảo hộ. Vì vậy, cả lớp 9A đã làm được 120 tấm chắn bảo hộ. Tìm số bạn nam, số bạn nữ của lớp 9A. + Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn (O) lấy hai điểm G và E (theo thứ tự A, G, E, B) sao cho tia EG cắt tia BA tại D. Đường thẳng vuông góc với BD tại D cắt BE tại C, đường thẳng CA cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh tứ giác DFBC nội tiếp. b) Chứng minh: DA DG DE BA BE BC. + Cho tam giác nhọn ABC, BD và CE là hai đường cao. Lấy các điểm N M trên các đường thẳng BD CE sao cho 0 AMB ANC 90. Chứng minh rằng tam giác AMN cân.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Bảo Thắng - Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bảo Thắng, tỉnh Lào Cai; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Bảo Thắng – Lào Cai : + Cho 5 kg dung dịch loại I và 6 kg dung dịch loại II của cùng một loại muối A. Biết rằng tổng khối lượng muối A trong cả hai dung dịch bằng 0.49 kg và nồng độ muối A trong dung dịch loại I hơn nồng độ muối A trong dung dịch loại II là 1%. Tìm khối lượng muối A trong mỗi dung dịch. + Chọn ngẫu nhiên một học sinh từ một nhóm học sinh gồm: 3 học sinh khối lớp 7; 5 học sinh khối lớp 8 và 8 học sinh khối lớp 9. Tính xác suất để học sinh được chọn là học sinh khối lớp 7 hoặc khối lớp 8. + Cho tam giác ABC đều có cạnh bằng a. a) Tính độ dài đường cao AH của tam giác ABC; b) Trên tia đối của tia BC lấy điểm D sao cho 0 ADC 45. Tính độ dài đoạn BD.