Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức đóng vai trò quan trọng trong quá trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em thể hiện kiến thức, năng lực và xác định hướng đi tiếp theo trong sự nghiệp học tập của mình. Trong số các môn thi được chú trọng, môn Toán luôn được coi là bài kiểm tra khó khăn và quyết định sự đậu rớt của nhiều học sinh. Đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Lâm Đồng đã được tổ chức vào ngày .../06/2019. Trong đó, có một số câu hỏi rất thú vị và đòi hỏi sự tư duy logic, khả năng phán đoán và tính toán chính xác từ các thí sinh. Ví dụ, một câu hỏi đề cập đến việc tính số học sinh trong lớp 9A dựa trên thông tin về việc trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ. Câu hỏi khác liên quan đến định lý hình học, yêu cầu thí sinh chứng minh một tứ giác nội tiếp trong một tình huống cụ thể. Thông qua việc xem xét và giải quyết các bài tập trong đề thi Toán của kỳ tuyển sinh này, học sinh có cơ hội thực hành, rèn luyện và phát triển kỹ năng toán học của mình. Đồng thời, đề thi cũng giúp quý thầy cô, phụ huynh và những người quan tâm có cái nhìn rõ hơn về trình độ và sự chuẩn bị của học sinh trước kỳ thi quan trọng này. Hy vọng rằng, mỗi em học sinh sẽ tự tin và thành công trên con đường học tập của mình sau kỳ thi tuyển sinh vào lớp 10 THPT tại Lâm Đồng.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2021 - 2022 sở GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT công lập môn Toán (chung) năm học 2021 – 2022 sở GD&ĐT Bến Tre; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho đường tròn O và điểm M sao cho OM = 6cm. Từ điểm M kẻ hai tiếp tuyến MA và MB đến đường tròn O (A và B là các tiếp điểm). Trên đoạn thẳng OA lấy điểm D (D khác A và O), dựng đường thẳng vuông với OA tại D và cắt MB tại E. a) Chứng minh tứ giác ODEB nội tiếp đường tròn. b) Tứ giác ADEM là hình gì? Vì sao? c) Gọi K là giao điểm của đường thẳng MO và O sao cho điểm O nằm giữa điểm M và điểm K. Chứng minh tứ giác AMBK là hình thoi. + Dựa vào hình bên, hãy: a) Viết ra tọa độ các điểm M và P. b) Xác định hoành độ điểm N. c) Xác định tung độ điểm Q. +  Cho đường thẳng 5 6 2021 d y m x với m là tham số. a) Điểm O(0;0) có thuộc d không? Vì sao? b) Tìm các giá trị của m để d song song với đường thẳng: y x 4 5.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội : + Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng: a) Tứ giác OBME nội tiếp. b) 2 2 CD CE CO R. c) M luôn di chuyển trên một đường tròn cố định. + Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương. + Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Quảng Bình; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho đường tròn O R đường kính AB, dây cung MN vuông góc với AB tại I sao cho AI BI. Trên đoạn thẳng MI lấy điểm H (H khác M và I), tia AH cắt đường tròn O R tại điểm thứ hai là K. Chứng minh rằng: a) Tứ giác BIHK nội tiếp đường tròn. b) AHM đồng dạng với AMK. c) 2 AH AK BI AB R. + Cho phương trình 2 x x m 6 4 0 1 (với m là tham số). a) Giải phương trình (1) khi m = 1. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm 1 2 x x thỏa mãn 2020 2021 2014 x x x x 1 2 1 2. + Cho a b là các số thực dương. Chứng minh 1 15 15 4.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021 – 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường PTNK – TP HCM : + Cho tam giác ABC vuông tại A. Các điểm E, F lần lượt thay đổi trên các cạnh AB, AC sao cho EF // BC. Gọi D là giao điểm của BF với CE và H là hình chiếu vuông góc của D lên EF. Đường tròn (I) đường kính EF cắt BF, CE tương ứng tại M, N (M khác F, N khác E). a) Chứng minh rằng AD và đường tròn ngoại tiếp tam giác HMN cùng đi qua tâm I của đường tròn (I). b) Gọi KL lần lượt là hình chiếu vuông góc của E, F lên BC và P, Q tương ứng là giao điểm của EM, FN với BC. Chứng minh các tứ giác AEPL, AFQK nội tiếp và không đổi khi E, F thay đổi. c) Chứng minh rằng nếu EL và FK cắt nhau trên đường tròn (I) thì EM và FN cắt nhau trên đường thẳng BC. + Cho N tập hợp (N > 6), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái a, b, c, …, x, y, z. a) Biết rằng trong N tập hợp đã cho, hai tập hợp bất kỳ có chung đúng một chữ cái và không có chữ cái nào có mặt trong tất cả N tập hợp này. Chứng minh rằng không có chữ cái nào có mặt trong 6 tập hợp từ N tập hợp đã cho. b) Biết rằng trong số N tập hợp đã cho, hai tập hợp bất kỳ có chung đúng hai chữ cái và không có hai chữ cái nào cũng có mặt trong tất cả N tập hợp này. Hỏi trong số N tập hợp đã cho, có nhiều nhất là bao nhiêu tập hợp có chung đúng hai chữ cái?