Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương - Hà Nội

Thứ Hai ngày 01 tháng 06 năm 2020, trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần thứ hai giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề có cấu trúc tương tự đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một công nhân dự định làm 33 sản phẩm trong thời gian đã định. Trước khi làm việc xí nghiệp giao thêm cho 29 sản phẩm nữa. Do vậy mặc dù người đó đã làm tăng mỗi giờ 3 sản phẩm song vẫn hoàn thành chậm hơn dự kiến 1 giờ 30 phút. Tính số sản phẩm người công nhân dự định làm trong một giờ (biết rằng mỗi giờ người đó làm không dưới 8 sản phẩm). [ads] + Cho (O) và điểm M nằm ngoài (O). Qua M kẻ tiếp tuyến MA, MB với (O) tại tiếp điểm A, B. Một đường thẳng d đi qua M cắt (O) tại C, D (MC < MD và tia MC nằm giữa hai tia MB, MO). I là điểm chính giữa dây CD. a) Chứng minh: Tứ giác MAOI nội tiếp. b) Chứng minh: MA^2 = MC.MD. c) Cho BI cắt (O) tại điểm thứ hai là E. Chứng minh AE song song với CD và tam giác AED đồng dạng tam giác DAM. d) Qua I kẻ đường thẳng song song với BD cắt AB tại K. Chứng minh CK vuông góc BO. + Từ một miếng tôn hình chữ nhật có kích thước 22cm x 25cm, người ta muốn gò thành mặt xung quanh của cái bình hình trụ (đáy làm từ miếng tôn khác và coi như hao hụt đường nối tạo thành bình hình trụ không đáng kể). Hỏi người ta nên dùng miếng tốn như thế nào để bình có thể đựng được 1 lít nước? Tại sao?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL giữa kỳ 1 Toán 9 năm 2020 - 2021 trường THCS Trần Mai Ninh - Thanh Hóa
Đề KSCL giữa kỳ 1 Toán 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL giữa kỳ 1 Toán 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho biểu thức B. a) Tìm điều kiện của b để B xác định và rút gọn B. b) Tìm giá trị của b để B > -1. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. a) Cho AB = 6cm, AC = 8cm. Tính AH. b) Chứng minh AB^2/AC^2 = HB/CH. c) Chứng minh BC.BE.CF = AH^3. + Rút gọn các biểu thức A và B.
Đề KSCL giữa học kì 1 Toán 9 năm 2020 2021 phòng GDĐT Hà Đông Hà Nội
Thứ Năm ngày 05 tháng 11 năm 2020, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa học kì 1 môn Toán lớp 9 năm học 2020 – 2021. Đề KSCL giữa học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 60 phút. Trích dẫn đề KSCL giữa học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội : + Cho biểu thức A và B với x > 0; x khác 9. 1) Tính giá trị của biểu thức A khi x = 1,44. 2) Rút gọn biểu thức B. 3) Tìm giá trị nhỏ nhất của biểu thức S = 1/B + A. + Cho tam giác ABC vuông tại A, đường cao AH. Biết BC = 8cm, BH = 2cm. 1) Tính độ dài các đoạn thẳng AB, AC, AH. 2) Trên cạnh AC lấy điểm K (K khác A và K khác C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC. 3) Chứng minh rằng: S_BHD = 1/4S_BKC.(cos ABD)^2. + Tìm giá trị nhỏ nhất của biểu thức K.
Đề KSCL giữa kì 2 Toán 9 năm 2018 - 2019 phòng GDĐT Hà Đông - Hà Nội
Vừa qua, phòng Giáo  dục và Đào tạo quận Hà Đông, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng giữa học kì 2 môn Toán dành cho học sinh khối lớp 9, nhằm kiểm tra kiến thức môn Toán của học sinh lớp 9 trong giai đoạn từ đầu đến giữa học kỳ 2 năm học 2018 – 2019. Đề KSCL giữa kì 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề KSCL giữa kì 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hà Đông – Hà Nội : + Cho Parabol (P): y = -x^2 và đường thẳng (d): y = 2x – 3. a) Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ. b) Tìm toạ độ giao điểm của (P) và (d). [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ sản xuất cũng nhận chung được một đơn hàng, nếu hai tổ cùng làm thì sau 15 ngày sẽ xong. Tuy nhiên, sau khi cùng làm được 6 ngày thì tổ I có việc bận phải chuyển công việc khác, do đó tổ II làm một mình 24 ngày nữa thì hoàn thành đơn hàng. Hỏi nếu làm một mình thì mỗi tổ làm xong trong bao nhiêu ngày? + Cho (O; R), MN là dây không đi qua tâm. C, D là hai điểm bất kì thuộc dây MN (C, D không trùng với M, N). A là điểm chính giữa của cung nhỏ MN. Các đường thẳng AC và AD lần lượt cắt (O) tại điểm thứ hai là E, F. a) Chứng minh góc ACD = AFE và tứ giác CDFE nội tiếp. b) Chứng minh AM^2 = AC.AE. c) Kẻ đường kính AB. Gọi I là tâm đường tròn ngoại tiếp tam giác MCE. Chứng minh M, L, B thẳng hàng.