Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Nghi Lộc - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Nghi Lộc – Nghệ An : + Đại hội Công đoàn huyện Nghi Lộc lần thứ IX, nhiệm kỳ 2023 – 2028 dự kiến tổ chức vào ngày 07 tháng 6 năm 2023. Để chuẩn bị ghế ngồi cho đại biểu, Ban Tổ chức sử dụng hội trường 300 chỗ ngồi có đúng 300 ghế được chia đều cho các dãy. Nếu bớt mỗi dãy 3 ghế và thêm 5 dãy thì số ghế trong hội trường không thay đổi. Hỏi ban đầu, số ghế trong hội trường được chia thành bao nhiêu dãy? + Một bồn chứa xăng hình trụ có đường kính đáy 2,2m và chiều cao 3,5m (Hình vẽ). Biết rằng, cứ 1kg sơn thì sơn được 8m2. Hỏi để sơn bề mặt ngoài của bồn chứa xăng hết bao nhiêu kg sơn? Giả sử bề dày thành bồn chứa xăng không đáng kể (lấy pi = 3,14; kết quả làm tròn đến chữ số thập phân thứ hai sau dấu phẩy). + Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM, AN với M, N là tiếp điểm và cát tuyến APQ (AP < AQ và M nằm trên cung nhỏ PQ). Gọi D là trung điểm PQ, T là giao điểm của MD với (O). a) Chứng minh tứ giác AMON nội tiếp. b) Chứng minh: NT // PQ. c) Kéo dài MO cắt (O) tại K, từ O kẻ đường thẳng vuông góc với OM cắt (O) tại I và L. Gọi E là điểm bất kỳ trên cung nhỏ IK (E không trùng với I và K). Nối ME, LE cắt OI, OK lần lượt tại F và H. Chứng minh rằng: 2 OF OH IF KH.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh
Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Trà Vinh. Đề thi bao gồm hai phần: phần chung dành cho tất cả thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có một sân bóng đá hình chữ nhật, chiều dài lớn hơn chiều rộng 37m và diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của sân bóng đá này. 2. Một máy giặt và một tivi có tổng giá là 28,690,000 đồng. Sau khi giảm 10% cho máy giặt và 15% cho tivi, tổng giá của hai sản phẩm là 24,961,000 đồng. Hãy tính giá trị ban đầu của mỗi sản phẩm trước khi giảm giá. 3. Cho biểu thức B. Với giá trị nào của x thì B nhỏ nhất? Hãy tìm giá trị nhỏ nhất của biểu thức đó. Chúc các em học sinh thành công trong kỳ thi tuyển sinh và giữ gìn sức khỏe!
Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hoà Bình
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hoà Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD ĐT Hoà Bình Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD ĐT Hoà Bình Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Hoà Bình tổ chức. Kỳ thi sẽ diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Hoà Bình: 1. Bác Bình trồng cam trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 4m, chu vi của mảnh vườn là 40m. Biết rằng cứ 3m2 bác Bình trồng được 1 cây cam, hỏi bác Bình trồng được bao nhiêu cây cam trên mảnh vườn đó? 2. Cho tam giác ABC vuông tại A có AB = 5 cm và BC = 13 cm. Hãy tính cạnh AC và đường cao AH. 3. Cho đường tròn tâm O và điểm A nằm ngoài đường tròn, từ A kẻ các tiếp tuyến AM, AN với đường tròn. Lấy điểm K thuộc cung nhỏ MN, kẻ tiếp tuyến với đường tròn O tại K cắt AM, AN theo thứ tự tại E và F. Gọi giao điểm của OE, OF với MN theo thứ tự là P và Q. a) Chứng minh rằng tứ giác AMON là tứ giác nội tiếp. b) Chứng minh rằng 1/2 * EOF = MON. c) Chứng minh rằng ME/OF = OE/MP. d) Chứng minh rằng OK, EQ, FP đồng quy. Chúc quý thầy cô và các em học sinh giải đề thi thành công! Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và nắm vững kiến thức Toán để chuẩn bị cho kỳ thi sắp tới. Cảm ơn đã đọc!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Chào đón quý thầy cô và các em học sinh lớp 9, chúng tôi xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (hệ chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Kỳ thi sẽ diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Ngãi: + Đề bài 1: Cho bốn số thực a, b, c, d thỏa mãn a + b + c + d = 10 và a2 + b2 + c2 + d2 = 28. Hãy tìm giá trị lớn nhất của biểu thức T = ab + ac + ad. + Đề bài 2: Đề cho đường tròn tâm O, bán kính R và hai điểm B, C cố định trên (O), BC = R. Điểm A thay đổi trên cung lớn BC của (O) sao cho AB < AC. ... (Nội dung chi tiết và phức tạp của đề bài 2) + Đề bài 3: Một số nguyên dương được gọi là “số đặc biệt” nếu thỏa mãn các điều kiện nhất định. ... (Nội dung chi tiết và phức tạp của đề bài 3) Với những câu hỏi thú vị và phức tạp như vậy, chúng ta cần phải rèn luyện kiến thức và kỹ năng làm bài Toán một cách chắc chắn. Hy vọng rằng đề thi này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh và có thể vượt qua thử thách một cách xuất sắc.
Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Hà Nội Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết, do CLB Toán Lim (Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Nguyễn Văn Hoàng) thực hiện. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022-2023 của sở GD&ĐT Hà Nội: 1. Tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC, CA, AB tại D, E, F. a) Gọi AI gặp DF tại M. Chứng minh rằng: CM vuông góc AI. b) Gọi AI gặp DE tại N. Chứng minh rằng: DM = DN. c) Các tiếp tuyến tại M, N của (K, KM) cắt nhau tại S. Chứng minh rằng AS // ID. 2. Tập hợp A gồm 70 số nguyên dương không vượt quá 90, B là tập hợp các số có dạng x + y với x thuộc A, y thuộc A (x, y không nhất thiết phân biệt). a) Chứng minh rằng 68 thuộc B. b) Chứng minh rằng B chứa 91 số nguyên liên tiếp. 3. Tìm hai số nguyên dương m, n sao cho m^3 - m n và n^3 - m n đều là số nguyên tố. Hy vọng rằng các em học sinh sẽ học tập và thực hành trên đề thi này để chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!