Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải

Nội dung Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải Bản PDF - Nội dung bài viết Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán có lời giải Đây là tài liệu gồm 193 trang, chứa đựng 50 đề thi ôn thi chọn học sinh giỏi môn Toán lớp 7, kèm theo đáp án và lời giải chi tiết. Sản phẩm này nhằm giúp học sinh lớp 7 ôn tập, chuẩn bị cho kỳ thi chọn HSG Toán cấp trường, cấp quận / huyện, cấp tỉnh / thành phố. Danh sách các đề thi bao gồm: Đề thi HSG lớp 7 huyện Chương Mỹ năm học 2014 - 2015 Đề thi HSG lớp 7 huyện Tiền Hải năm học 2016 - 2017 Đề thi HSG lớp 7 huyện Quốc Oai năm học 2015 - 2016 Đề thi HSG lớp 7 huyện Thanh Uyên năm học 2017 - 2018 ... (có tổng cộng 50 đề thi) Mỗi đề thi đều đi kèm với đáp án và lời giải chi tiết, giúp học sinh hiểu rõ về cách giải các bài tập và ôn tập hiệu quả hơn. Sản phẩm này là công cụ hữu ích để học sinh lớp 7 rèn luyện và nâng cao kiến thức Toán của mình, chuẩn bị tốt cho kỳ thi HSG sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đội tuyển Toán 7 lần 5 năm 2023 - 2024 trường THCS Xuân Lẹ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 7 lần 5 năm học 2023 – 2024 trường THCS Xuân Lẹ, huyện Thường Xuân, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn: x2 – 3xy + p2y2 = 12p. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2×5 – 1 chia hết cho y4 và 2y2 + 1 chia hết cho x4. + Cho tam giác ABC không cân tại A, cạnh BC cố định, đỉnh A di động. Vẽ phân giác trong AD của tam giác. Trên tia CA lấy điểm E sao cho CE = AB. Gọi I là trung điểm của AE. Chứng minh rằng đường thẳng đi qua I và song song với AD luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Anh Sơn – Nghệ An : + Một người mang một số tiền vào siêu thị mua hoa quả và nhẩm tính với số tiền đó có thể mua được 3kg nho hoặc 4kg táo hoặc 5kg mận. Tính giá tiền mỗi loại, biết 3kg táo đắt hơn 2kg mận là 210 000 đồng. + Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm BC. a) Chứng minh các tam giác DAB và DAC vuông cân. b) Lấy điểm M bất kỳ trên đoạn CD. Kẻ các đoạn thẳng BE và CF vuông góc với đường thẳng AM (E; F thuộc đường thẳng AM). Chứng minh rằng: BE = AF. c) Chứng minh tam giác DEF vuông cân. + Cho ABC cân tại B, có ABC = 80 độ. Lấy điểm I nằm trong tam giác sao cho IAC = 10 độ và ICA = 30 độ. Tính số đo AIB.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Chứng minh rằng với mọi số nguyên dương m và n thì mn(m2 – 1)(n2 + 2) chia hết cho 9. + Cho đa thức f(x), biết rằng khi chia f(x) cho x – 1 thì dư 3, chia cho x – 2 thì dư 5, chia cho (x – 1)(x – 2) thì được thương là 2x và còn dư. Tìm đa thức f(x). + Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC tại H, tia phân giác của HAC cắt BC tại D. a) Chứng minh BA = BD. b) Trên tia đối của tia AB lấy điểm K sao cho AK = HD. Kẻ DE vuông góc với AC tại E. Chứng minh KE // AD. c) Gọi F là giao điểm của HK với AD, chứng minh F là trung điểm của đoạn thẳng HK.