Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Đông Hưng Thái Bình

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 7 môn Toán năm 2022-2023 Phòng GD&ĐT Đông Hưng Thái Bình Đề học sinh giỏi lớp 7 môn Toán năm 2022-2023 Phòng GD&ĐT Đông Hưng Thái Bình Chào đón đến với Đề thi học sinh giỏi môn Toán lớp 7 năm học 2022-2023 từ Phòng Giáo dục và Đào tạo UBND huyện Đông Hưng, tỉnh Thái Bình. Đề thi này sẽ giúp các em học sinh lớp 7 thử sức, nâng cao kiến thức và kỹ năng Toán của mình thông qua các câu hỏi thú vị và bài toán phong phú. Một trong số các câu hỏi thú vị trong đề thi là: "Lúc ban đầu ba kho có tất cả 710 tấn thóc. Sau khi bán đi 1/5 số thóc ở kho I, 1/6 số thóc ở kho II và 1/11 số thóc ở kho III thì số thóc còn lại ở ba kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn thóc?" Câu hỏi này sẽ đòi hỏi các em phải áp dụng kiến thức về tỷ lệ, phân số và giải phương trình để giải quyết bài toán. Ngoài ra, đề thi còn đưa ra các bài toán khác như về tam giác, tính chất của các góc, và bài toán về tam giác vuông. Các em sẽ được thách thức và phấn đấu để giải quyết những bài toán này một cách chính xác và logic. Chúc các em học sinh lớp 7 đạt kết quả tốt trong kỳ thi này và tiếp tục phát huy kiến thức, sự nỗ lực trong học tập. Hy vọng rằng Đề thi học sinh giỏi môn Toán lớp 7 năm học 2022-2023 sẽ là cơ hội tốt để các em thể hiện khả năng và đam mê với môn học Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Tiền Hải – Thái Bình : + Tìm 3 phân số có tổng bằng 9 9 70 biết các tử số tỉ lệ theo 3:4:5 và các mẫu số tương ứng tỉ lệ theo 5:1:2. + Cho tam giác ABC cân tại A có ba góc đều nhọn. Về phía ngoài tam giác vẽ tam giác ABE vuông cân tại B. Kẻ đường cao AH (H thuộc BC), trên tia đối của tia AH lấy điểm I sao cho AI = BC. 1) Chứng minh: Hai tam giác ABI và BEC bằng nhau. 2) Chứng minh: BI vuông góc với CE. 3) Phân giác của góc ABC cắt cạnh AC tại D, phân giác của góc BDC cắt cạnh BC tại M. Phân giác góc BDA cắt đường thẳng BC tại N. Chứng minh: BD 1 MN 2. + Cho 2022 số a1, a2, a3, ……., a2021, a2022 là các số tự nhiên khác 0 thỏa mãn: 1 2 3 2021 2022 111 1 1 aaa a a. Chứng minh rằng: Tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.
Đề HSG Toán 7 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An.
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Ân Thi - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ân Thi, tỉnh Hưng Yên.
Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu Olympic cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương : + Tìm các số nguyên x và y biết: x + xy + y = 2. + Cho các số nguyên dương a b c d thoả mãn a2 + b2 + c2 + d2 chia hết cho 2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC nhọn có AB < AC < BC, O là giao điểm ba tia phân giác các góc trong của tam giác. Kẻ OH vuông góc AC tại H, OI vuông góc BC tại I. 1) Chứng minh CHI cân. 2) Trên đoạn IC lấy K sao cho IK = AH , gọi M là giao điểm của AK và HI . Chứng minh M là trung điểm của AK. 3) Chứng minh B, O, M thẳng hàng.