Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi tỉnh Toán 12 THPT năm 2020 - 2021 sở GDĐT Hà Tĩnh
Sáng thứ Sáu ngày 04 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 hệ THPT năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh được biên soạn theo dạng đề tự luận, đề gồm 01 trang với 09 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Cho hàm số y = (-2x + 1)/(x + 1) có đồ thị là đường cong (C) và đường thẳng d: y = 2x + m. Tìm m để d cắt (C) tại hai điểm A, B sao cho diện tích tam giác OAB bằng √7 (với O là gốc tọa độ). + Một hộp đựng 20 tấm thẻ được đánh số liên tiếp từ 1 đến 20. Một người rút ngẫu nhiên cùng lúc 3 tấm thẻ. Tính xác suất để bất kì hai trong ba tấm thẻ lấy ra có hai số tương ứng ghi trên hai tấm thẻ luôn hơn kém nhau ít nhất hai đơn vị. + Phần trên của một cây thông Noel có dạng hình nón, đỉnh S, độ dài đường sinh l = 2m và bán kính đáy r = 1m. Biết rằng AB là một đường kính đáy của hình nón và I là trung điểm đoạn thẳng SB (tham khảo hình vẽ). Để trang trí người ta lắp một dây bóng nháy trên mặt ngoài của cây thông từ vị trí A đến I. Tính độ dài ngắn nhất của dây bóng nháy.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GDĐT Tiền Giang
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 bài thi với tổng cộng 07 bài toán tự luận, kỳ thi được diễn ra vào các ngày 13 và 14 tháng 10 năm 2020. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Cho a, b, c là các số nguyên với a khác 0 thỏa mãn an2 + bn + c là số chính phương với mọi số nguyên dương n. Chứng minh rằng tồn tại các số nguyên x, y sao cho a = x2; b = 2xy; c = y2. + Có 3 lớp học, mỗi lớp có n học sinh. Chiều cao của 3n bạn ở 3 lớp đôi một khác nhau. Chia 3n bạn thành n nhóm, mỗi nhóm gồm 3 học sinh đến từ cả 3 lớp. Bạn cao nhất ở mỗi nhóm được nhận danh hiệu “người mẫu”. Biết rằng với mọi cách chia nhóm, mỗi lớp luôn có ít nhất 10 “người mẫu”. Chứng minh rằng giá trị nhỏ nhất của n là 40. + Cho hai đường tròn (w1), (w2) có cùng bán kính cắt nhau tại hai điểm phân biệt X1, X2. Đường tròn (w) tiếp xúc ngoài với (w1) tại T1 và tiếp xúc trong với (w2) tại T2. Chứng minh rằng X1T1 cắt X2T2 tại một điểm trên (w).
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT An Giang
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT An Giang gồm 02 bài thi với tổng cộng 09 bài toán tự luận, kỳ thi được diễn ra vào ngày 17 tháng 10 năm 2020. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT An Giang : + Một bảng ô vuông hình chữ nhật có 2020 hàng và 2021 cột. Ký hiệu (m;n) (1 =< m =< 2020; 1 =< n =< 2021) là ô vuông nằm ở hàng thứ m và cột thứ n. Thực hiện tô màu các ô vuông của bảng theo quy tắc sau: Lần thứ nhất tô màu hai ô vuông (r;s); (r + 1;s + 1) với 1 =< r =< 2019 và 1 =< s =< 2020. Lần thứ hai trở đi, tô màu hai ô vuông chưa có màu nằm cạnh nhau trong cùng một hàng hay cùng một cột. Chứng minh không thể tô màu tất cả các ô của bảng đã cho. + Cho ABC là tam giác có ba góc nhọn. Gọi A’, B’ và C’ là các điểm đối xứng với A, B và C lần lượt qua BC, CA và AB. Đường tròn ngoại tiếp các tam giác ABB’ và ACC’ có A1 là điểm chung thứ hai. Tương tự B1 và C1 là điểm chung thứ hai của các đường tròn ngoại tiếp các tam giác BAA’; BCC’ và CAA’; CBB’. Chứng minh rằng các đường thẳng AA1, BB1 và CC1 đồng quy.
Đề chọn đội tuyển thi HSG Toán Quốc gia 2020 - 2021 trường chuyên Bến Tre (lần 2)
Đề chọn đội tuyển thi HSG Toán Quốc gia 2020 – 2021 trường chuyên Bến Tre (lần 2) gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia 2020 – 2021 trường chuyên Bến Tre (lần 2) : + Trên mặt phẳng cho tập hợp A gồm 66 điểm phân biệt và tập hợp B gồm 16 đường thẳng phân biệt. Gọi m là số bộ (a;b) sao cho a thuộc A và b thuộc B. Chứng minh rằng m =< 159. + Cho hình đa giác đều 9 cạnh. Mỗi đỉnh của nó được tô bằng một trong hai màu trắng hoặc đen. Có tồn tại hay không hai tam giác phân biệt có diện tích bằng nhau, mà các đỉnh của mỗi tam giác được tô cùng một màu? Chứng minh khẳng định đó. + Cho hàm số f: R → R thỏa mãn f(xy + f(x)) = xf(y) + f(x) với mọi x, y thuộc R. a) Chứng minh rằng nếu có x thuộc R; y thuộc R sao cho f(x) = f(y) khác 0 thì x = y. b) Tìm tất cả các hàm số thỏa mãn đề bài.