Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức và ứng dụng - Nguyễn Đăng Ái

Chuyên đề số phức và ứng dụng do thầy Nguyễn Đăng Ái biên soạn gồm 369 trang, bao gồm lý thuyết, phân dạng và hướng dẫn giải, ví dụ minh họa và bài tập có lời giải chi tiết chủ đề số phức. Nội dung tài liệu : I. CƠ BẢN VÀ CÁC PHÉP TOÁN TRÊN TẬP SỐ PHỨC 1.1 Các định nghĩa về tập số phức C 1.2. Các phép toán trên tập số phức 1.3. Các tính chất cơ bản của số phức 1.4. Lũy thừa của số ảo in – Cấp số cộng và cấp số nhân trong số phức 1.5. Hàm số phức – Bài toán đồng nhất hàm bằng số ảo f(i) = Ai + B II. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC – CÔNG THỨC Ơ LE 2.1. Cách chuyển từ dạng đại số sang dạng lượng giác của một số phức 2.2. Ứng dụng của dạng lượng giác – Công thức Ơ le – Công thức Moivre cơ bản 2.3. Ứng dụng dạng lượng giác vào một số bài toán cực trị lũy thừa lớn 2.4. Ứng dụng dạng lượng giác vào một số bài toán số phức có mô đun bằng 1 III. PHƯƠNG TRÌNH BẬC NHẤT – HỆ PHƯƠNG TRÌNH BẬC NHẤT 3.1. Phương trình bậc nhất chứa một biến 3.2. Phương trình bậc nhất chứa hai biến 3.3. Biện luận theo tham số phức một phương trình bậc nhất phức 3.4. Hệ phương trình bậc nhất trong số phức IV. CĂN BẬC HAI – PHƯƠNG TRÌNH BẬC CAO – XỬ LÍ MÔ ĐUN 4.1. Căn bậc hai của một số âm 4.2. Căn bậc hai của một số phức 4.3. Phương trình bậc 2 trên tập số phức 4.4. Phương trình bậc cao – Phân tích nhân tử – Đặt ẩn phụ – Khai căn thức 4.5. Các định lí VIET áp dụng vào phương trình bậc cao trắc nghiệm phức 4.6. Phương trình phức dạng đa thức với các hệ số thực 4.7. Xử lí mô đun trong các phương trình phức V. BẤT ĐẲNG THỨC ĐẠI SỐ PHỨC – BÀI TOÁN CỰC TRỊ ĐẠI SỐ 5.1. Bất đẳng thức tam giác – Bài toán số phức đồng dạng 5.2. Bất đẳng thức CÔ SI – Bất đẳng thức BUNHIA vận dụng trong số phức 5.3. Một số bất đẳng thức không mẫu mực trong số phức VI. MẶT PHẲNG PHỨC – GIẢI TÍCH TRÊN MẶT PHẲNG PHỨC 6.1. Biểu diễn điểm và các công thức cơ bản trên mặt phẳng phức 6.2. Bất đẳng thức tam giác ứng dụng vào một số bất đẳng thức hình học 6.3. Quỹ tích là đường thẳng trên mặt phẳng phức 6.4. Quỹ tích là đường tròn trên mặt phẳng phức 6.5. Elip trong mặt phẳng phức – Các bài toán nâng cao 6.6. Quỹ tích là đường hypebol cơ bản 6.7. Các đường cong bất kì: Đường thẳng – Đường tròn – Elip – Hypebol – Parabol 6.8. Phép quay trong số phức – Nâng cao tư duy véc tơ phức 6.9. Bài toán tương giao trên mặt phẳng phức – Hệ phương trình mô đun phức 6.10. Biểu diễn số phức là một miền trên hình phẳng – Cực trị phức trên miền D 6.11. Bài toán tâm tỉ cự trên mặt phẳng phức 6.12. Bình phương vô hướng ứng dụng trên mặt phẳng phức 6.13. Các số phức có mô đun bằng nhau – Bài toán phân bố véc tơ trên vòng tròn

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm cực trị số phức
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề cực trị số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. + Dạng 1: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn z z 0 nhỏ nhất. + Dạng 2: Cho số phức z thỏa mãn zz R 0. Tìm số phức thỏa mãn P zz 1 đạt giá trị lớn nhất, nhỏ nhất. + Dạng 3: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn P zz zz 3 4 đạt giá trị nhỏ nhất. + Dạng 4: Cho số phức z thỏa mãn zz zz 1 2. Tìm số phức thỏa mãn 2 2 P zz zz 3 4 đạt giá trị nhỏ nhất. + Dạng 5: Cho số phức z thỏa mãn 0 zz R. Tìm số phức thỏa mãn 2 2 P zz zz 1 2 đạt giá trị lớn nhất, nhỏ nhất. + Dạng 6: Cho hai số phức 1 2 z z thỏa mãn 1 0 zz R và z z 21 22 w w trong đó z0 1 2 w w là các số phức đã biết. Tìm giá trị nhỏ nhất của biểu thức 1 2 P z z. + Dạng 7: Cho hai số phức 1 2 z z thỏa mãn 11 1 zw R và z R 21 2 w trong đó w w1 2 là các số phức đã biết. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức Pzz 1 2. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm biểu diễn hình học của số phức
Tài liệu gồm 24 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề biểu diễn hình học của số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Định nghĩa. 2. Phương pháp giải toán. + Bài toán 1: Tìm tập hợp điểm biểu diễn số phức z thỏa mãn f zz g zz hoặc f zz là số thực hoặc f zz là số ảo. + Bài toán 2: Tìm tập hợp điểm biểu diễn số phức w biết 1 2 w zz z và số phức z thỏa mãn z a bi R. 3. Các ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương trình phức
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Căn bậc hai của số phức. 2. Phương trình phức. 3. Tìm căn bậc hai của số phức z a bi a b. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm các phép tính toán với số phức
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các phép tính toán với số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. A. LÝ THUYẾT TRỌNG TÂM 1) Các khái niệm cơ bản. 2) Biểu diễn hình học của số phức. 3) Phép cộng và phép trừ số phức. 4) Số phức liên hợp và môđun của số phức. 5) Phép chia cho số phức khác 0. 6) Một số các kết quả quan trọng. B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng 1: Tính toán cơ bản với số phức. + Dạng 2: Bài toán quy về giải hệ phương trình nghiệm thực. + Dạng 3: Lấy môđun hai vế tìm số phức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.