Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD ĐT Bắc Ninh

Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD ĐT Bắc Ninh Bản PDF Tháng 9 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2019 – 2020, kỳ thi được diễn ra trong hai ngày liên tiếp 24/09/2019 và 25/09/2019. Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD&ĐT Bắc Ninh gồm tổng cộng 7 bài toán, thời gian làm bài ở mỗi ngày thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD&ĐT Bắc Ninh : + Cho một đa giác đều A1A2 … A20 có 10 đỉnh của đa giác được tô màu xanh, 10 đỉnh còn lại được tô màu đỏ. Ta nối các đỉnh với nhau. a) Gọi a là số các đoạn thẳng nối hai đỉnh màu đỏ liên tiếp, b là số các đoạn thẳng nối hai đỉnh màu xanh liên tiếp. Chứng minh a = b. b) Xét tập hợp S gồm đường chéo A1A4 và tất cả các đường chéo khác của đa giác mà có cùng độ dài với nó. Chứng minh trong tập hợp đó, số đường chéo có hai đầu là màu đỏ bằng với số đường chéo có hai đầu là màu xanh. Gọi k là số đường chéo có hai đầu là màu xanh trong, tìm tất cả các giá trị có thể có của k. [ads] + Cho tam giác nhọn ABC, D là một điểm bất kì trên cạnh BC. Trên cạnh AC, AB lần lượt lấy các điểm E, F sao cho ED = EC, FD = FB. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, BDF, CDE. a) Gọi H là trực tâm của tam giác JDK. Chứng minh rằng tứ giác IJHK nội tiếp. b) Chứng minh rằng khi D chuyển động trên BC, đường tròn ngoại tiếp tam giác IJK luôn đi qua một điểm cố định khác điểm I. + Cho hai dãy số (un), (vn) xác định như sau u0 = a, v0 = b với hằng số thực a, b cho trước thỏa mãn 0 < a < b và un+1 = (un + vn)/2, vn+1 = √un+1.vn với mọi số tự nhiên n. a) Chứng tỏ hai dãy đã cho đều hội tụ và có giới hạn bằng nhau. b) Tìm giới hạn đó theo a, b.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi lập đội tuyển chọn học sinh giỏi dự thi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra trong hai ngày 14/09/2023 và 15/09/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho tam giác ABC có trực tâm H nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T khác A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc với OH. b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). + Trên bàn có 99 tấm thẻ được đánh số từ 1 đến 4 và từ 6 đến 100. Hai bạn A và B luân phiên chơi trò chơi với luật như sau: i) A là người thực hiện lượt chơi đầu tiên. ii) Trong mỗi lượt chơi, người chơi nhặt ra khỏi bàn 2 tấm thẻ được đánh hai số nguyên liên tiếp nhau sao cho số bé hơn không chia hết cho 10 và giữ một tấm thẻ trên tay đồng thời bỏ đi tấm thẻ còn lại. iii) Khi tới lượt chơi của mình, nếu người chơi không thể thực hiện được yêu cầu ii hoặc chọn được hai tấm thẻ nhưng tổng số của một trong hai tấm thẻ đó với một tấm thẻ tuỳ ý trên tay hai người chơi đang giữ bằng 101 thì là người thua cuộc. Biết rằng hai người chơi có thể thấy được số ghi trên tất cả các tấm thẻ trên bàn và trong tay đối thủ. Hỏi ai là người có chiến thuật thắng. + Cho đa thức bậc hai P(x) thuộc R[x] thoả mãn P(x) > 0 với mọi x ≥ 0. Chứng minh rằng tồn tại số nguyên dương m sao cho (x + 1)^m.P(x) là đa thức với hệ số không âm.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hòa Bình
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hòa Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình : + Cho dãy số (an) xác định bởi a1 = 2 và an + 1. a) Chứng minh rằng dãy số (an) là dãy số tăng. b) Với mỗi số nguyên dương n đặt bn. Chứng minh rằng dãy số (bn) có giới hạn hữu hạn và tìm giới hạn đó. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Điểm P bất kỳ nằm trong tam giác ABC sao cho AP vuông góc BC. Hạ PE vuông góc AB, PF vuông góc AC (E thuộc AB, F thuộc AC). Gọi L là giao điểm của BF và CE, Q là giao điểm của AL và BC và X là giao điểm của EF và BC. a) Chứng minh rằng đường tròn (QEF) luôn đi qua một điểm cố định. b) Kẻ đường kính AK của đường tròn (O). Chứng minh rằng KL vuông góc AX. + Cho tập hợp X = {1; 2; …; 49}. Tô màu ít nhất 24 phần tử của X với điều kiện sau: nếu a, b thuộc X (không nhất thiết phân biệt) được tô màu thì a + b cũng được tô màu, miễn là a + b thuộc X. Gọi S là tổng tất cả các phần tử không được tô màu của tập X. a) Chứng minh rằng S =< 625. b) Chỉ ra tất cả các cách tô màu sao cho S = 625.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hưng Yên
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hưng Yên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra trong hai ngày: ngày thi thứ nhất 28/08/2023 và ngày thi thứ hai: 29/08/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Tam giác nhọn không cân ABC có trực tâm H và đường tròn ngoại tiếp (O), đường phân giác trong của góc BAC cắt BC tại K. Điểm Q nằm trên đường tròn (O) sao cho AQ vuông góc QK. Đường tròn ngoại tiếp tam giác AQH cắt AC, AB lần lượt tại Y, Z. Gọi T là giao điểm của BY và CZ, P là giao điểm của YZ và BC. a) Chứng minh rằng PZ/PY = BH/HC. b) Chứng minh rằng TH vuông góc KA. + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn nội tiếp (I) của tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Biết AI cắt BC tại S và cắt (O) tại điểm thứ hai là M. Các đường tròn ngoại tiếp tam giác BSM, CSM cắt ME, MF tương ứng tại K và L (K và L khác M). a) Chứng minh rằng bốn điểm I, L, S, K cùng nằm trên một đường tròn. b) Gọi T là giao điểm thứ hai của MD với (O). Chứng minh rằng đường tròn ngoại tiếp tam giác TKL tiếp xúc với (O). + Cô giáo có tất cả 2278 viên kẹo thuộc về k loại kẹo khác nhau. Cô chia cho các học sinh của mình mỗi người một số viên kẹo và không có học sinh nào nhận nhiều hơn một viên kẹo ở cùng một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kỳ so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kỳ đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M trong mỗi trường hợp sau: a) k = 67. b) k = 68.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT An Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT An Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 19 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho đa thức P(x) = xn + 4 với n thuộc N. a. Với n = 4 hãy phân tích đa thức P(x) thành tích các đa thức với các hệ số đều là số nguyên. b. Tìm tất cả các giá trị n nguyên dương sao cho đa thức P(x) phân tích được thành tích của hai đa thức khác hằng số với hệ số là các số nguyên. + Hai kênh dẫn nước (P) và (Q) vuông góc nhau (như hình vẽ) chiều rộng của hai kênh lần lượt là a và b. Một thanh gỗ AB có thiết diện không đáng kể nổi trên mặt nước và trôi từ kênh (P) sang kênh (Q). Tìm độ dài lớn nhất của thanh gỗ AB sao cho thanh gỗ trôi qua được từ kênh (P) sang kênh (Q). + Tính theo n số các điểm trên mặt phẳng tọa độ Oxy có tọa độ (x;y) với x; y đều là số nguyên thỏa mãn |x| + |y| =< n với n là số tự nhiên cho trước.