Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lần 1 Toán 12 năm 2021 - 2022 sở GDĐT Hải Dương

Thứ Sáu ngày 10 tháng 12 năm 2021, sở Giáo dục và Đào tạo UBND tỉnh Hải Dương tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 12 năm học 2021 – 2022; kỳ thi được tổ chức theo hình thức thi trực tuyến (thi online). Đề khảo sát chất lượng lần 1 Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 09 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng lần 1 Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Dương : + Một cửa hàng bán vải Thanh Hà với giá bán mỗi kg là 50.000 đồng. Với giá bán này thì cửa hàng chỉ bán được khoảng 25kg. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm 4000 đồng cho một kg thì số vải bán được tăng thêm là 50kg. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi kg là 30.000 đồng. A. 41.000 đồng. B. 34.000 đồng. C. 38.000 đồng. D. 45.000 đồng. + Ông A dự định làm một cái thùng phi hình trụ (không có nắp) với dung tích 3 5m bằng thép không gỉ để đựng nước. Chi phí trung bình cho 2 1m thép không gỉ là 500.000 đồng. Hỏi chi phí nguyên vật liệu làm cái thùng thấp nhất là bao nhiêu (làm tròn đến hàng nghìn)? A. 6424000 đồng. B. 5758000 đồng. C. 7790000 đồng. D. 6598000 đồng. + Một cốc thủy tinh hình nón có chiều cao 20cm. Người ta đổ vào cốc thủy tinh một lượng nước, sao cho chiều cao của lượng nước trong cốc bằng 3 4 chiều cao cốc thủy tinh, sau đó người ta bịt kín miệng cốc, rồi lật úp cốc xuống như hình vẽ thì chiều cao của nước lúc này là bao nhiêu (làm tròn đến chữ số thập phân thứ 2)? A. 3,34cm. B. 2, 21cm. C. 5,09cm. D. 4,27cm. + Cho khối lăng trụ tam giác ABC A B C có thể tích V. Gọi M là trung điểm của AA N là trung điểm AM P nằm trên BB sao cho BP B P 4. Gọi thể tích khối đa diện MNBCC P là V1. Tỉ số V1 V bằng? + Quay tam giác ABC vuông ở A quanh cạnh AB. Khi đó đường gấp khúc BCA sẽ quét trong không gian một A. hình nón. B. hình trụ. C. hình cầu. D. hình chóp.

Nguồn: toanmath.com

Đọc Sách

Đề thi khảo sát chuyên đề Toán 12 lần 1 năm học 2017 - 2018 trường THPT Nguyễn Thị Giang - Vĩnh Phúc
Đề thi khảo sát chuyên đề Toán 12 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Chọn phát biểu đúng khi nói về tính đơn điệu của hàm số y = ax^4 + bx^2 + c (a ≠ 0) A. Khi a > 0 thì hàm số luôn đồng biến B. Khi a < 0 hàm số có thể nghịch biến trên R C. Hàm số luôn tồn tại đồng thời khoảng đồng biến và nghịch biến D. Hàm số có thể đơn điệu trên R [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau B. Hai khối chóp có chiều cao và diện tích đáy tương ứng bằng nhau thì có thể tích bằng nhau C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau + Trong các mệnh đề sau, mệnh đề nào đúng? A. Số đỉnh và số mặt của một hình đa diện luôn bằng nhau B. Tồn tại hình đa diện có số cạnh và số mặt bằng nhau C. Tồn tại hình đa diện có số cạnh bằng nhau D. Tồn tại hình đa diện có số đỉnh và số mặt bằng nhau
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Thanh Miện - Hải Dương lần 1
Đề thi thử môn Toán 2018 lần 1 trường THPT Thanh Miện – Hải Dương gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Một người đàn ông muốn chèo thuyền từ vị trí X tới vị trí Z về phía hạ lưu bờ đối diện càng nhanh càng tốt, trên một dòng sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền trực tiếp qua sông để đến H rồi sau đó chạy đến Z, hay có thể chèo thuyền trực tiếp đến Z, hoặc anh ta có thể chèo thuyền đến một điểm Y giữa H và Z và sau đó chạy đến Z. Biết anh ấy chèo thuyền với vận tốc 6 km/h, chạy với vận tốc 8 km/h, quãng đường HZ = 8 km và tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tìm khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến Z. A. 9√7 B. √73/6 C. 1 + √7/8 D. 3/2 [ads] + Phát biểu nào sau đây là đúng? A. Hình hai mươi mặt đều có 20 đỉnh, 30 cạnh, 12 mặt B. Hình hai mươi mặt đều có 30 đỉnh, 12 cạnh, 20 mặt C. Hình hai mươi mặt đều có 30 đỉnh, 20 cạnh, 12 mặt D. Hình hai mươi mặt đều có 12 đỉnh, 30 cạnh, 20 mặt + Cho hàm số y = f(x) liên tục trên R, có đồ thị (C) như hình vẽ bên. Khẳng định nào sau đây là đúng? A. Tổng các giá trị cực trị của hàm số bằng 7 B. Giá trị lớn nhất của hàm số là 4 C. Đồ thị (C) không có điểm cực đại nhưng có hai điểm cực tiểu là (−1; 3) và (1; 3) D. Đồ thị (C) có ba điểm cực trị tạo thành một tam giác vuông cân
Đề thi thử THPT Quốc gia lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Hai Bà Trưng - Vĩnh Phúc
Đề thi thử môn Toán 2018 trường THPT Hai Bà Trưng – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Thiết diện của một mặt phẳng với một tứ diện chỉ có thể là: A. Một tứ giác hoặc một ngũ giác B. Một tam giác hoặc một hình bình hành C. Một tam giác hoặc một tứ giác D. Một tam giác hoặc một ngũ giác + Khối đa diện đều nào có số đỉnh nhiều nhất A. Khối tứ diện đều B. Khối nhị thập diện đều [ads] C. Khối bát diện đều D. Khối thập nhị diện đều + Cho hai đường thẳng song song d và d’. Trong các khẳng định sau khẳng định nào đúng? A. Cả ba khẳng định trên đều đúng B. Có đúng một phép tịnh tiến biến d thành d’ C. Có vô số phép tịnh tiến biến d thành d’ D. Phép tịnh tiến theo vectơ v có giá vuông góc với d biến d thành d’
Đề thi giữa học kỳ 1 năm học 2017 - 2018 môn Toán 12 trường THPT C Nghĩa Hưng - Nam Định
Đề thi giữa học kỳ 1 năm học 2017 – 2018 môn Toán 12 trường THPT C Nghĩa Hưng – Nam Định gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án (gạch chân). Trích dẫn đề thi : + Cho hàm số y = f(x) xác định và có đạo hàm trên tập D, x0 ∈ D. Chọn mệnh đề đúng trong các mệnh đề sau. A. Hàm số đạt cực trị tại các điểm x1, x2 mà x1 < x2 thì x1 là điểm cực tiểu, x2 là điểm cực đại B. Giá trị cực đại của hàm số y = f(x) trên D chính là giá trị lớn nhất của hàm số trên D C. Nếu f'(x0) = 0 và f”(x0) = 0 thì x0 là điểm cực đại D. Nếu x0 là điểm cực đại thì f'(x0) = 0 [ads] + Cho hàm số y = (x + 1)/√(x^2 + 4).Khẳng định nào sau đây đúng? A. Đồ thị hàm số có 2 tiệm cận đứng là x = ±2 B. Đồ thị hàm số có 2 tiệm cận đứng là x = ±2 và một tiệm cận ngang y = 1 C. Đồ thị hàm số có 2 tiệm cận ngang là x = ±1 D. Đồ thị hàm số có 2 tiệm cận ngang y = ±1 + Mặt phẳng (AB’C’) chia khối lăng trụ ABC.A’B’C’ thành các khối đa diện nào? A. Một khối chóp tam giác và một khối chóp tứ giác B. Hai khối chóp tam giác C. Một khối chóp tam giác và một khối chóp ngũ giác D. Hai khối chóp tứ giác