Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán năm 2019 - 2020 cụm trường THPT huyện Việt Yên - Bắc Giang

Ngày 13 tháng 01 năm 2020, cụm các trường THPT huyện Việt Yên, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2019 – 2020. Đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang mã đề 101, đề gồm có 04 trang với 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 120 phút, chưa kể thời gian giám thị coi thi phát đề. Trích dẫn đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang : + Một người gửi 8 triệu đồng vào ngân hàng với lãi suất 0,6 % một tháng. Kể từ lần gửi đầu tiên cứ sau hai tháng người đó lại gửi vào ngân hàng với số tiền 8 triệu đồng. Hỏi sau đúng hai năm kể từ lần gửi đầu tiên số tiền người đó thu được cả gốc và lãi là bao nhiêu ? biết ngân hàng tính lãi trên số tiền có thực tế ở trong ngân hàng, trong suốt quá trình gửi người đó không rút ra một đồng nào (kết quả làm tròn đến hàng nghìn). A. 101,876 triệu đồng. B. 103,852 triệu đồng. C. 106,385 triệu đồng. D. 110,686 triệu đồng. + Cho khối chóp S.ABCD có đáy là hình bình hành, điểm M thuộc cạnh SC sao cho SM = kMC. Mặt phẳng (P) qua AM và song song với BD chia khối chóp thành hai khối đa diện (H) và (E), (H) là khối đa diện chứa đỉnh C. Gọi VH, VE lần lượt là thể tích của (H) và (E). Tìm k để VH = 6VE. [ads] + Trong không gian Oxyz, cho tam giác ABC có A(3;1;2), B(-1;5;4) và điểm C thuộc trục hoành. Điểm M(a;b;c) nằm trên cạnh AB sao cho diện tích tam giác MAC bằng 3 lần diện tích tam giác MBC. Mệnh đề nào dưới đây đúng? + Cho hình trụ có tâm của hai đáy là O, O’. Hai điểm A, B lần lượt nằm trên hai đường tròn (O), (O’) sao cho AB = 4a, góc giữa AB và OO’ bằng 30°. Khoảng cách giữa AB và OO’ bằng a√3. Diện tích toàn phần của hình trụ bằng? + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 9 lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau từng đôi một, trong đó có 3 chữ số lẻ và 2 chữ số chẵn. Tính tổng các số lập được.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An Gia Lai
Nội dung Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An Gia Lai Bản PDF Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. File WORD (dành cho quý thầy, cô):
Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 2)
Nội dung Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 2) Bản PDF Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày thi thứ hai) gồm 3 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trên một đường thẳng có 20 điểm P1, P2, … P20 được sắp theo thứ tự đó, mỗi điểm sẽ được tô bởi một trong hai màu xanh hoặc đỏ. Hỏi có bao nhiêu cách tô màu để cho nếu số các điểm liền kề được tô màu giống nhau thì luôn là một số lẻ? [ads] + Cho P(x) là một đa thức hệ số nguyên và năm số nguyên phân biệt x1, x2, x3, x4, x5 thỏa điều kiện P(xi) = 5 với i = 1, 2, 3, 4, 5. Chứng minh rằng không tồn tại số nguyên n nào để -6 ≤ P(n) ≤ 4 hoặc 6 ≤ P(n) ≤ 16. + Cho x1, x2, … xk; y1, y2, … yn là các số nguyên phân biệt (với k, n ∈ Z*) sao cho tồn tại đa thức hệ số nguyên P(x) thỏa điều kiện: P(x1) = P(x2) = …. = P(xk) = 58 và P(y1) = P(y2) = …. = P(yn) = 2017 Xác định giá trị lớn nhất của kn. File WORD (dành cho quý thầy, cô):
Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 1)
Nội dung Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 1) Bản PDF Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia năm 2018 sở GD và ĐT Quảng Ngãi (Ngày thi thử nhất) gồm 4 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác nhọn ABC có B, C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD, ACE vuông cân tại A và hình vuông BCFG. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đối với đường thẳng AC). [ads] a) Chứng minh rằng 3 điểm D, Y, F thẳng hàng. b) Các đường thẳng DY, EX cắt nhau tại P. Chứng minh rằng đường thẳng AP luôn đi qua một điểm cố định khi A thay đổi. + Có bao nhiêu bộ sắp thứ tự (a, b, c) với a, b, c là các số nguyên dương thỏa mãn điều kiện [a, b, c] = 2^3.3^5.5^7? (Kí hiệu a, b, c là bội chung nhỏ nhất của ba số nguyên dương a, b, c). + Tìm số nguyên dương n nhỏ nhất để 5n +1 chia hết cho 7^2018. File WORD (dành cho quý thầy, cô):