Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Hải Phòng

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Hải Phòng Đề thi tuyển sinh vào môn Toán năm 2023-2024 sở GD&ĐT Hải Phòng Các em học sinh thân mến, hôm nay Sytu xin giới thiệu đến quý thầy cô và các em đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo thành phố Hải Phòng. Kỳ thi sẽ diễn ra vào ngày thứ Bảy 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Hải Phòng: Một quyển vở giá 14,000 đồng, một hộp bút giá 30,000 đồng. Minh muốn mua 01 hộp bút và một số quyển vở. a) Gọi x (x thuộc N*) là số quyển vở Minh mua, y là số tiền cần trả khi mua x quyển vở và 01 hộp bút. Biểu diễn y theo x. b) Nếu Minh có 300,000 đồng để mua vở và 01 hộp bút thì Minh mua được tối đa bao nhiêu quyển vở? Một trường học có mảnh vườn hình chữ nhật. Chu vi của mảnh vườn là 100m. Nhà trường mở rộng mảnh vườn bằng cách tăng chiều dài thêm 5m và chiều rộng thêm 4m, diện tích tăng thêm 240m2. Tính chiều dài và chiều rộng của mảnh vườn trước khi mở rộng. Một chi tiết máy gồm một phần hình trụ và một phần hình nón. Chu vi đáy của phần hình trụ là 37,68cm. Tính thể tích của chi tiết máy đó (pi ≈ 3,14; kết quả làm tròn đến chữ số thập phân thứ 2). Với nội dung bài thi đa dạng và thú vị như vậy, các em hãy cố gắng ôn tập và chuẩn bị tốt để đạt kết quả cao trong kỳ thi sắp tới nhé. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. + Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. [ads] b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. + Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol 2 (P): y = 2x^2 và đường thẳng (d): y = ax + b. a) Tìm điều kiện của b sao cho với mọi số thực a, parabol (P) luôn cắt đường thẳng (d) tại hai điểm phân biệt. b) Gọi A là giao điểm của (P) và (d) có hoành độ bằng 1, B là giao điểm của (d) và trục tung. [ads] Biết rằng tam giác OAB có diện tích bằng 2, tìm a và b. + Tìm tất cả các số nguyên x, y, z không âm thỏa mãn xyz + xy  + yz + zx + x + y + z = 2017. + Bên trong hình vuông cạnh bằng 1, lấy 9 điểm phân biệt tùy ý sao cho không có bất kỳ 3 điểm nào trong chúng thẳng hàng. Chứng minh rằng tồn tại 3 điểm trong số đó tạo thành một tam giác có diện tích không vượt quá 1/8.