Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán TN THPT 2021 trường THPT chuyên Lê Quý Đôn - Bình Định

Thứ Năm ngày 20 tháng 05 năm 2021, trường THPT chuyên Lê Quý Đôn, thành phố Quy Nhơn, tỉnh Bình Định tổ chức kỳ thi khảo sát thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi thử Toán TN THPT 2021 trường THPT chuyên Lê Quý Đôn – Bình Định được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án mã đề 501, 502, 503, 504, 505, 506, 507, 508. Trích dẫn đề thi thử Toán TN THPT 2021 trường THPT chuyên Lê Quý Đôn – Bình Định : + Cho hai số phức z1 và z2 thay đổi thỏa mãn điều kiện. Biết giá trị lớn nhất của biểu thức là a + b với a và b là các số nguyên dương. Tính giá trị của biểu thức (kí hiệu chỉ môđun của số phức z). + Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Biết rằng chiều cao của bình gấp 3 lần bán kính đáy của nó. Người ta thả vào đó một khối trụ và đo được thể tích nước tràn ra ngoài là 4 (dm3). Biết rằng một mặt của khối trụ nằm trên mặt đáy của nón (như hình dưới) đồng thời khối trụ có chiều cao bằng đường kính đáy của hình nón. Tính diện tích xung quanh Sxq của bình nước (giả sử khối trụ thả vào đặc và chìm hết trong nước). + Trong đợt hội trại được tổ chức tại trường THPT chuyên Lê Quý Đôn (Bình Định), Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD, phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 100.000 đồng cho một m2 bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc 3. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số. Câu 3: a) Tìm số phức z và tính môđun của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng AB. b) Tìm điểm C thuộc trục x’Ox sao cho tam giác ABC vuông tại A. Câu 6: a) Giải giá trị của biểu thức lượng giác. b) Có 6 học sinh An, Bình, Xuân, Hạ, Thu, Đông tham gia công tác của trường. Nhà trường chia ngẫu nhiên các học sinh đó thành hai nhóm, mỗi nhóm 3 người. Tính xác suất để An và Bình ở chung một nhóm. Câu 7: Tính thể tích lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AC và BA’ theo a. Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Hải Phòng
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Hải Phòng có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm môđun của số phức w = 3 + 4z. b) Giải bất phương trình logarit. Câu 4: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục hoành. Câu 5: Tìm tọa độ điểm I thuộc đường thẳng d sao cho khoảng cách từ I đến mặt phẳng (a) bằng 2. Câu 6: a) Giải phương trình lượng giác. b) Trong lễ khai mạc Hội khỏe Phù Đổng của trường THPT X, ban khánh tiết chọn đồng thời 5 bạn trong số 22 bạn lớp trưởng để đón tiếp khách. Tính xác suất trong 5 bạn được chọn có cả nam và nữ, biết trong 22 bạn lớp trưởng có 8 nam và 14 nữ. Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SM và AC. Câu 8: Tìm tọa độ các đỉnh của hình bình hành ABCD, biết đỉnh C có hoành độ dương. Câu 9: Giải phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức Q.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Cà Mau
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Cà Mau có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm môđun của số phức z. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Viết phương trình của đường thẳng d đi qua A và vuông góc với mặt phẳng (P). Tìm tọa độ giao điểm của đường thẳng d với mặt phẳng (P). Câu 6: a) Giải phương trình lượng giác. b) Một tổ học sinh có 6 học sinh nam và 4 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng làm bài tập. Tính xác suất để trong 4 học sinh được gọi có cả nam lẫn nữ và số nam không nhiều hơn số nữ. Câu 7: Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ trọng tâm của tam giác SAC đến mặt phẳng (SBC). Câu 8: Tìm tọa độ các điểm P và Q. Câu 9: Giải hệ phương trình trên tập số thực. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Quảng Xương 3 - Thanh Hóa lần 4
Đề thi thử THPT Quốc gia 2016 môn Toán trường Quảng Xương 3 – Thanh Hóa lần 4 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trùng phương. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Giải phương trình lượng giác. b) Giải bất phương trình logarit. Câu 4: Tìm số hạng chứa x^3 trong khai triển nhị thức Niu – tơn của biểu thức. Câu 5: Tìm tọa độ các đỉnh B’, C’ và viết phương trình mặt cầu đi qua bốn điểm A, B, C, A’. Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Để thành lập đội tuyển dự thi học sinh giỏi giải toán trên máy tính cầm tay môn toán cấp tỉnh nhà trường cần chọn 5 em từ 8 em học sinh trên. Tính xác suất để trong 5 em được chọn có cả học sinh nam và học sinh nữ, có cả học sinh khối 11 và học sinh khối 12. Câu 7: Tính theo a thể tích khối chóp S.ABCD và tính góc giữa đường thẳng SD và mặt phẳng (SBC). Câu 8: Tìm tọa độ các đỉnh A, B và D của hình thang ABCD. Câu 9: Giải bất phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.