Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 trường THCS Nghinh Xuyên Phú Thọ

Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Nghinh Xuyên Phú Thọ Bản PDF Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nghinh Xuyên - Phú Thọ Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nghinh Xuyên – Phú Thọ gồm 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 120 phút. Đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Nghinh Xuyên – Phú Thọ: Số tiền phải trả để mua x gói kẹo được cho bởi công thức y = x(54000 + 6000) (đồng). Tính số tiền phải trả để mua 5 gói kẹo. Nếu có 500,000 đồng thì có thể mua tối đa bao nhiêu gói kẹo? Cho hệ phương trình 3x + 2y = 9 và 5x - my = 5 có nghiệm (x;y). Tìm m để biểu thức C = xy/(x+1) đạt giá trị lớn nhất. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O bán kính R. Kẻ đường cao AH, BK của tam giác ABC, các tia AH, BK lần lượt cắt đường tròn O tại các điểm thứ hai là D, E. Chứng minh tứ giác ABHK nội tiếp đường tròn. Xác định tâm đường tròn đó. Chứng minh rằng HK // DE. Cho O và dây AB cố định, điểm C di chuyển trên đường tròn O sao cho ABC có ba góc nhọn. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp CHK không đổi. Đề thi trên là một bài thi thử mô phỏng cụ thể như một đề thi chính thức. Học sinh sẽ được kiểm tra kỹ năng giải quyết vấn đề, tư duy logic và sự hiểu biết sâu rộng về kiến thức Toán học. Chúc các em học sinh có kỳ thi thử thành công và tự tin chuẩn bị cho kỳ thi chính thức sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Tin) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho đường tròn O và điểm I nằm ngoài đường tròn đó. Từ điểm I kẻ hai tiếp tuyến IA IB với đường tròn O (A B là các tiếp điểm). a) Chứng minh tứ giác OAIB nội tiếp đường tròn. b) Qua A kẻ đường thẳng song song với IB cắt đường tròn O tại điểm thứ hai là C (C khác A). Đường thẳng IC cắt đường tròn O tại điểm thứ hai là E (E khác C). Đường thẳng AE cắt IB tại K. Chứng minh 2 KB AK KE. c) Đường thẳng IC cắt AB tại D. Chứng minh IE DE  IC DC. + Cho parabol 2 P y x và đường thẳng d y x m 2 (m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt sao cho một trong hai giao điểm đó có hoành độ bằng 1. + Cho phương trình 2 x x m 6 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt 1 2 x x thoả mãn 2 2 1 1 2 2 2 2 38 x x x x.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn (O). Dựng đường kính NP của đường tròn (O) vuông góc với BC tại M (P nằm trên cung nhỏ BC). Tia phân giác của ABC cắt AP tại I. a) Chứng minh PI = PB. b) Chứng minh IMB = INA. + Cho tam giác nhọn ABC cân tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho BDC = 2BAC (AD không vuông góc với BC). a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn. b) Chứng minh OD là đường phân giác ngoài của BDC và tổng BD + CD bằng hai lần khoảng cách từ A đến đường thẳng OD. + Cho parabol 2 P 2 y x và đường thẳng (d): y ax b. Tìm các hệ số a b biết rằng (d) đi qua điểm 3 A 1 2 và có đúng một điểm chung với (P).
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Từ điểm A ở bên ngoài đường tròn (O) kẻ hai tiếp tuyến AM AN với (O) (M N là các tiếp điểm). Gọi E là trung điểm của AN, C là giao điểm của ME với (O) (C khác M) và H là giao điểm của MN và AO. a) Chứng minh tứ giác HCEN nội tiếp. b) Gọi D là giao điểm của AC với (O) (D khác C). Chứng minh tam giác MND là tam giác cân. c) Gọi I là giao điểm của NO với (O) (I khác N ); K là giao điểm của MD và AI. Tính tỉ số KM KD. + Cho phương trình 2 x mx 2 1 3 0 1 (với m là tham số). Tìm tất cả các giá trị nguyên của m để phương trình (1) có hai nghiệm 1 2 x x thỏa mãn 1 2 x x 2 5. + Cho abc là độ dài ba cạnh của một tam giác. Chứng minh rằng: 222 abc abc.
Đề vào 10 môn Toán (chuyên Tin) 2022 - 2023 trường chuyên Hùng Vương - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Tin) năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Tin) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ : + Cho hai số thực a b phân biệt. Quanh đường tròn viết n số thực đôi một khác nhau 3 n sao cho mỗi số bằng tổng của hai số đứng liền kề nó. Tìm n và các số được viết nếu hai số đầu tiên được viết lần lượt là a và b. + Cho tam giác ABC nội tiếp đường tròn (O) có đường cao 1 AA đường trung tuyến BB1 và đường phân giác trong 1 CC. Gọi DEF lần lượt là giao điểm của 11 1 AA BB CC với (O). Biết ABC 111 là tam giác đều. a) Chứng minh rằng tam giác ABC đều. b) Gọi M là trung điểm của đoạn thẳng CE N là trung điểm của đoạn thẳng CD I là giao điểm của AN và FM. Tính AIF. c) Tia CI cắt AF và (O) lần lượt tại J và K. Chứng minh rằng I là trung điểm của CK. Tính tỉ số JA JF. + Chứng minh rằng nếu m n là hai số tự nhiên thỏa mãn 2 2 2022 2023 mm nn thì 2022 1 m n là số chính phương.