Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải nhanh bài toán số phức bằng máy tính Casio - Nguyễn Việt Anh

Tài liệu gồm 12 trang hướng dẫn các phương pháp giải nhanh bài toán số phức bằng máy tính Casio – Vinacal kèm theo các bài tập rèn luyện, tài liệu được biên soạn bởi tác giả Nguyễn Việt Anh, đây là các kỹ thuật giải toán mà các em nên tìm hiểu để phát huy tối đa công dụng của máy tính cầm tay trong giải toán số phức, giúp tìm ra hướng giải và tiết kiệm thời gian. A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao. Bài toán tổng quát : Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z. Phương pháp giải : + Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2. + Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường. Tính Moldun, Argument và số phức liên hợp của số phức Z: + Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả. + Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2. B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại. 1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó. Bài toán tổng quát : Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số. Phương pháp giải : Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho. Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1. + Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =. + Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức. 2. Đưa số phức về dạng lượng giác và ngược lại. Bài toán tổng quát : Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi). Phương pháp giải : + Ấn shift chọn 4 (r < θ) sau khi nhập số phức. + Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b. Chuyển từ lượng giác về số phức: chuyển về radian: + Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-)). + Ấn shift 2 chọn 4 (a = bi) và lấy kết quả. 3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức. Làm tương tự như dạng chính tắc của số phức. [ads] C. Phương trình số phức và các bài toán liên quan. 1. Phương trình không chứa tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là? Phương pháp giải : + Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức. + Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án. 2. Phương trình tìm tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c. Phương pháp giải : + Mode 2 và lần lượt thay các hệ số ở đáp án vào đề. + Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng. D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài). Bài toán tổng quát : Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z? Phương pháp giải : + Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi. + Calc a = 1000 và b = 100. + Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b. + Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể. + Sau khi tìm được a, b ta làm nốt yêu cầu của đề. E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức. Bài toán tổng quát : Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện. Phương pháp giải : Ưu tiên việc sử dụng 2 máy tính để giải: + Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát. + Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án. + Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng. F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện. Phương pháp giải : + Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế. + Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cơ bản số phức và các phép toán ôn thi TN THPT môn Toán
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (giáo viên Toán trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế), hướng dẫn giải các dạng toán cơ bản chuyên đề số phức và các phép toán trong chương trình môn Toán lớp 12, hướng đến kỳ thi tốt nghiệp THPT môn Toán; tài liệu phù hợp với các em học sinh lớp 12 mất gốc Toán. I. TÓM TẮT LÝ THUYẾT A. SỐ PHỨC VÀ CÁC PHÉP TOÁN. 1. Số i. 2. Định nghĩa số phức. 3. Số phức bằng nhau. 4. Biểu diễn hình học số phức. 5. Môđun của số phức. 6. Số phức liên hợp. 7. Cộng và trừ số phức. 8. Nhân hai số phức. 9. Chia hai số phức. B. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 1. Căn bậc hai của số thực âm. 2. Phương trình bậc hai với hệ số thực. II. BÀI TẬP TRẮC NGHIỆM MINH HỌA A. SỐ PHỨC VÀ CÁC PHÉP TOÁN. Dạng 1: Số phức và các khái niệm liên quan. Dạng 2: Tìm số phức thỏa mãn yêu cầu. Dạng 3: Biểu diễn số phức. B. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. III. LỜI GIẢI CHI TIẾT
Chủ đề số phức ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 148 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề số phức ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định các yếu tố cơ bản, biểu diễn hình học số phức. DẠNG 2 Bài toán quy về giải phương trình, hệ phương trình và điểm biểu diễn số phức. DẠNG 3 Các phép toán số phức. DẠNG 4 Phép chia số phức. DẠNG 5 Phương trình bậc hai hệ số thực. DẠNG 6 Cực trị số phức. DẠNG 7 Số phức trong đề thi của Bộ Giáo dục và Đào tạo. DẠNG 8 Một số bài toán số phức chọn lọc.
Toàn tập số phức cơ bản
Tài liệu gồm 58 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề số phức cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 4. Toàn tập số phức cơ bản : + Dạng đại số số phức cơ bản p1. + Dạng đại số số phức cơ bản p2. + Dạng đại số số phức cơ bản p3. + Dạng đại số số phức cơ bản p4. + Dạng đại số số phức cơ bản p5. + Dạng đại số số phức cơ bản p6. + Dạng đại số số phức cơ bản p7. + Dạng đại số số phức cơ bản p8. + Quỹ tích số phức cơ bản p1. + Quỹ tích số phức cơ bản p2. + Quỹ tích số phức cơ bản p3. + Quỹ tích số phức cơ bản p4. + Quỹ tích số phức cơ bản p5. + Quỹ tích số phức cơ bản p6. + Quỹ tích số phức cơ bản p7. + Quỹ tích số phức cơ bản p8. + Phương trình phức cơ bản p1. + Phương trình phức cơ bản p2. + Phương trình phức cơ bản p3. + Phương trình phức cơ bản p4. + Phương trình phức cơ bản p5. + Phương trình phức cơ bản p6. + Phương trình phức cơ bản p7. + Phương trình phức cơ bản p8. + Tổng hợp số phức cơ bản p1. + Tổng hợp số phức cơ bản p2. + Tổng hợp số phức cơ bản p3. + Tổng hợp số phức cơ bản p4. + Tổng hợp số phức cơ bản p5. + Tổng hợp số phức cơ bản p6. + Tổng hợp số phức cơ bản p7. + Tổng hợp số phức cơ bản p8. + Tổng hợp số phức cơ bản p9. + Tổng hợp số phức cơ bản p10.
Sử dụng phương pháp hình học giải bài toán tìm GTLN GTNN môđun số phức
Tài liệu gồm 27 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn sử dụng phương pháp hình học giải bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) môđun số phức, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 4: Số phức; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Điểm Torricelli: Cho tam giác ABC có góc lớn nhất không quá 120. Điểm Torricelli của tam giác ABC là điểm T nằm trong ABC và có tổng 3 cạnh TA TB TC p q r nhỏ nhất. Để tìm ra điểm này, ta dựng 3 tam giác đều ACM BCN ABO giao điểm của 3 đường tròn ngoại tiếp của 3 tam giác đều này (hoặc giao điểm của AN BM CO) chính là điểm Torricelli mà chúng ta cần tìm. 2. Bất đẳng thức Cauchy – Schwarz: Với hai dãy số thực 1 2 m a a a và 1 2 m b b b ta luôn có bất đẳng thức sau 1 2 1 2 1 1 2 2 m m m m a a a b b b a b a b a b. Dấu bằng xảy ra khi 1 2 2 2 m m a a a b b b. 3. Định lý Ptoleme hay đẳng thức Ptoleme là một đẳng thức trong hình học Euclid miêu tả quan hệ giữa độ dài bốn cạnh và hai đường chéo của một tứ giác nội tiếp. Định lý này mang tên nhà toán học và thiên văn học người Hy Lạp cổ đại Ptolemy (tức Claudius Ptolemaeus). Nếu A, B, C, và D là 4 đỉnh của tứ giác nội tiếp đường tròn thì: AC BD AB CD BC AD. 4. Bất đẳng thức Ptoleme là trường hợp tổng quát của định lý Ptoleme đối với một tứ giác bất kỳ. Nếu ABCD là tứ giác bất kỳ thì AC BD AB CD BC AD. Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn. 5. Định lí Stewart: Gọi a, b và c là độ dài các cạnh của 1 tam giác. Gọi d là độ dài của đoạn thẳng nối từ 1 đỉnh của tam giác với điểm nằm trên cạnh (ở đây là cạnh có độ dài là a) đối diện với đỉnh đó. Đoạn thẳng này chia cạnh a thành 2 đoạn có độ dài m và n định lý Stewart nói rằng: 2 2 2 b m c n a d mn. B. BÀI TẬP